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At a time when the ΛCDM model is experiencing increasing difficulty in accounting for observa-
tions, we expand the physical and mathematical foundations of its challenger, the Janus Cosmolog-
ical Model. We discuss recent observations suggesting that dark energy, if it may have been more
significant in the past, makes today the interpretation derived from the Standard Model problem-
atic, while these observational data confirm one of the predictions of the Janus model. We discuss
the possible impact of taking negative energy states into account in quantum mechanics.
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I. AN APPROACH WITH HEURISTIC ORIGIN

New observational data from the James Webb Telescope have created a serious crisis in the field of cosmology,
casting doubt on the validity of the standard ΛCDM model. At the same time, all efforts to capture and identify the
components of dark matter have been complete failures for decades. It is therefore perfectly justified to consider that
this dark matter, with positive mass, simply does not exist and that the phenomena it is supposed to account for can
be attributed to an entirely different cause. It should be noted that theorists have also been unable to give a credible
identity to this other invisible component, dark energy. For ten years, the Janus Cosmological Model has proposed an
alternative that boils down to the introduction of negative mass and energy components into the universe. Such an
approach was initially carried out heuristically, by adopting laws of interaction between positive and negative masses
according to:

- Masses of the same sign attract each other

- Masses of opposite signs repel each other.

This scheme immediately produced interesting results. Let us call ρ and ρ the positive and negative mass densities.
Assuming that |ρ| ≫ ρ, numerical simulations produced a rapid separation between the two types of masses from the
early 1990s. Negative masses then have a shorter accretion time (Jeans time).

tJ = 1√
4πGρ

≪ tJ = 1√
4πGρ

(1)

As a result, they immediately give rise to a regular distribution of spheroidal conglomerates, the positive mass then
gathering in the interstitial space, thus adopting a structure reminiscent of contiguous bubbles [1].
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FIG. 1. Very large-scale structure in contiguous bubbles

Considering a three-dimensional structure that is that of a foam made up of bubbles of equal volume, this corre-
sponds to a Weaire-Phelan structure [2]. Under these conditions, gravitational instability will cause galaxies to gather
along segments, representing the junction of three bubbles, while at the meeting points of these segments will be
located clusters of galaxies. The negative mass content will therefore play the same role as the dark matter - dark
energy ensemble, with a similar distribution.

FIG. 2. Comparative distribution of components for the λCDM model and the Janus Model

In 2017, the repeller dipole was discovered [3], which appears as a gap around which the surrounding galaxies
experience a repulsive force [4].



3

FIG. 3. The dipole Repeller [3]

From this time on, it was concluded that, during this constitution of the large-scale structure of the universe, the
fact that the positive mass is suddenly compressed by two adjacent clusters of negative mass must, by causing its
rapid heating and its no less rapid cooling by radiative losses, lead to a pattern of galaxy formation much faster than
the classical pattern. Indeed, flat plate structures are optimal for ensuring rapid dissipation of thermal energy.

FIG. 4. 2D didactic image evoking the formation diagram of galaxies in the Janus model [5].

Negative mass clusters are shown in green. In fig. 4-a, they exert a counterpressure on the plates constituting
the contiguous bubble structure of positive mass, which heats up rapidly, at the very moment of the creation of this
large-scale structure. In fig. 4-b, the rapid radiative loss causes the temperature in these plates to drop, making them
gravitationally unstable. In fig. 4-c, all galaxies form at the same time, in the first hundred million years. At the
same time as galaxies form, negative mass infiltrates between the galaxies and exerts a retro-compression on them,
ensuring their confinement.
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FIG. 5. Galaxy confined in a negative mass environment.

Their rotation curves are profoundly affected, exhibiting a plateau at the periphery. By adding a vast halo of
positive-mass dark matter to the visible mass, rotation rate measurements could be accounted for. The negative
mass environment plays a similar role [5]. The order of magnitude of the density in the vicinity of the galaxy is then
comparable in absolute value to the density in the halo, i.e., low, which ensures its stability given that the associated
Jeans time is then of the order of the age of the universe. The gravitational force exerted on the components of the
galaxy, created by this gap in the negative mass distribution, is then equivalent to the attractive field of its negative
image [4].

FIG. 6. Comparative actions of a dark matter halo and the equivalent gap in a negative mass distribution [4].

In fig.6-a, a schematic representation of the large-scale structure. In yellow, the galaxies, in green, the dark matter.
At the center of each of the cells in Figure 6-a, a negative-mass spheroidal cluster. In 6-b, the galaxy, in yellow with
its vast dark-matter halo, in blue. In fig.6-c, the same galaxy, housed in a negative-mass gap, a negative image of the
halo, ensuring the same confinement and the same rotation curve profile. What is true for confinement is also true
for gravitational lensing effects. A gap in a uniform negative-mass distribution creates positive lensing identical to
that created by the equivalent halo.
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FIG. 7. Gravitational lensing effects in the vicinity of galaxies.

What is true for galaxies also applies to galaxy clusters. Starting from such a configuration, by giving the galaxy a
rotational movement, numerical simulations show the immediate formation, in a few turns, of a barred spiral structure,
lasting for more than thirty turns.

FIG. 8. Results of numerical simulations [5].

Since the Janus model presents itself as the challenger to the standard ΛCDM model, it is important to note
the points where it provides a clear and coherent answer, where the dominant model does not. Indeed, for decades,
when this spiral structure is introduced as initial conditions, it dissipates in a very small number of turns. The
Janus model shows that these structures reflect the way in which non-collisional systems, such as galaxies, transfer
momentum to their environment, a straight line curve, not from near to far, by viscous constraint, but through an
action at a distance linked to the density waves that originate there, which have their counterpart in the negative mass
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environment. Thus, those who try to model this spiral structure by looking for what gives rise to it and what makes
it last are like physicists trying to understand the waves of the sea, forgetting what creates it: the wind. These spiral
waves therefore reflect a dissipative phenomenon. They will therefore persist without limitation over time. Finally,
let us point out that through these first simulations of spiral structure we had played on the parameter (m in the
figure) representing the ratio between the absolute value of the density in the environment, compared to the order of
magnitude of the density in the galaxy. It was then possible to show that high values caused the spiral arms to fold
into an annular formation.

FIG. 9. Evolution of the shape of galaxies as a function of density contrast [5].

If work has not yet been undertaken in this area, with resources finally up to the task, it is undoubtedly because the
simulation tools used are not designed to include negative masses in their data. Furthermore, the objections raised
by H. Bondi [6] in 1957, which will be discussed extensively in the rest of the article, are sufficient to maintain strong
scepticism about the possible introduction of negative masses in astrophysics as in cosmology. Let us recall the result
of introducing such masses into Einstein’s equation, in the model of general relativity:

- Positive masses attract their own kind as well as negative masses

- Negative masses repel their own kind as well as negative masses.

In the framework of general relativity, this leads to the appearance of a phenomenon that immediately violates the
physical principle of action-reaction: the runaway phenomenon, in which pairs of particles of opposite masses undergo
uniform acceleration, without their overall energy being modified.

FIG. 10. Runaway phenomenon [5].

At this point, there is only one conclusion: if we want to go further, we will have to move beyond the framework
of general relativity or, more precisely, include it in a broader geometric context. Before making this leap, we will
discuss the twin model suggested by Andrei Sakharov in 1967 (ref.[7–9]).
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II. 1967 : FIRST EXTENSION OF THE COSMOLOGICAL MODEL BY ANDREI SAKHAROV

Since the discovery of the CMB lent credence to the Big Bang model, it has emerged that these photons were the
result of the fantastic matter-antimatter annihilation that occurred in the distant past, leaving only one matter particle
in a billion. But then, why can’t we observe the primordial antimatter particles that should also have survived? To try
to answer this important question, Sakharov implemented what could be called the polarity principle. Our universe is
spatially oriented and temporally oriented. Sakharov therefore assumes the existence of a second layer of the universe
where the arrow of time is reversed and where everything that is "right" becomes "left," and vice versa, in short, a
universe PT-symmetrical to ours. Noting the violation of CP symmetry, he suggests that this second universe, which
he calls twin, and which he imagines linked to ours by the Big Bang singularity, is CPT-symmetric to ours. This
is an idea that is becoming fashionable again at the moment [10], noting that its supporters seem to ignore the one
who introduced it half a century earlier. If baryons are formed by the union of three quarks and antibaryons by
that of three antiquarks, Sakharov suggests that the first reaction would have been slightly faster than the second.
Then, when the energy level would have fallen, there would have remained in our universe sheet, in addition to the
remainder of matter, an equivalent remainder in the form of antiquarks, in a ratio of 3/1. The opposite situation in
the twin universe. In the figure 11, a 2D didactic image of Sakharov’s model.

FIG. 11. 2D didactic image of Andrei Sakharov’s model, with and without initial singularity.

Let us point out that this idea remains the only one still in the running today. But, you might ask, what does this
have to do with negative masses?
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III. GEOMETRIC MEANING OF ENERGY AND MASS INVERSION

It is to be found in the work of the mathematician J.M. Souriau [11, 12] which translates an application of symplectic
geometry to physics. It is also the expression of the main idea of the mathematician Emmy Noether, according to
which every new symmetry is associated with a new invariant. Souriau groups all these invariants in the same space,
the momentum space, the construction of which results from the action of a dynamical group on the dual of its
Lie algebra. With respect to relativistic physics, this dynamical, or symplectic, group is the isometry group of the
Minkowski space, the Poincaré group. Starting from a Lorentzian metric, the metric defining this space is:

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (2)

Its Gram matrix:

G =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (3)

We construct the Lorentz group axiomatically:

tLGL = G (4)

By adding the four-vector of space-time translations:

G =

 ∆x0

∆x1

∆x2

∆x3

 (5)

We obtain the isometry group of the ten-dimensional Minkowski space, the complete Poincaré group, whose matrix
representation is: (

L C
0 1

)
(6)

The Lorentz group has four connected components, each including certain symmetries. We have the sets:

- Ln , neutral component (including the neutral element)

- Ls , elements reversing space, but not time.

- Lt , elements reversing time, but not space.

- Lst , elements reversing both time and space.

Physics, until now, has limited the use of this complete group to the restricted, orthochronous Poincaré subgroup,
a subset containing components that do not reverse time:

{Lo} = {Ln} ∪ {Ls} (7)

The action on the dual of the Lie algebra then reveals energy, momentum and spin as components of the momentum
space. This subgroup includes P-symmetry, but not T-symmetry. We can then consider opting for the complete
Poincaré group, including the subset of its antichronous components:

{La} = {Lt} ∪ {Lst} (8)

But the action of the components then causes the inversion of energy and mass(see ref.[11] p190 eq.14.67) . We can
therefore see that group theory suggests considering the inclusion of negative mass and energy elements in physics,
that is to say, including PT-symmetry in the model. Initiated in [13], all this has been largely developed and extended
to CPT symmetry, through the Janus group, in reference [14]. In this perspective, Sakharov’s twin universe would
then be made up of particles of negative energy, and masses when they were endowed with them. But at no time
does he consider making these two entities interact.
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IV. THE GEOMETRIC AND TOPOLOGICAL CONTEXT

To bring these two entities into interaction, the approach then involves a major paradigmatic leap, of geometric
and more precisely topological essence, by using the concept of a two-sheet covering of a manifold.

FIG. 12. 2D didactic image of the adaptation of the Sakharov model.

The approach was outlined in 1994 in a now-defunct journal [15]. It consists of considering that the universe could
be configured according to the two-sheet covering of an even-dimensional projective, which is then unorientable. For
example, an S2 sphere can be configured according to the two-sheet covering of a P2 projective, whose image is the
surface described by W. Boy in 1902 (ref [16–18]). We will mesh this sphere by imagining that its “north” and “south”
poles represent the “Big Bang” and the “Big Crunch”, its equator representing its state of maximum extension. Its
meridians become the “timelines” of this closed 2D space-time.

FIG. 13. 2D didactic image of a closed space-time.

We will bring the antipodal points of this sphere into coincidence. We will note in passing that this operation brings
its two poles into coincidence, therefore "the Big Bang" and the "Big Crunch". In figure 14-a, the correspondence
between the points and their antipodes.
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FIG. 14. Configuration of the equatorial neighborhood of the sphere S2 as a two-sheet covering of the equator of the projective
P2.

In Figure figure 14-b the time arrows of this equatorial neighborhood. Figure 14-c shows how this strip is configured
according to the two-sheet covering of a unilateral, three-half-turn Möbius strip. The Boy surface represents the
immersion of the projective P2 in R3 and the way in which this covering is located on it. We see that the operation
has brought into coincidence portions of space-time with opposing time arrows (induced T-symmetry). In the following
figure, different views of the Boy surface. The reader will find in reference [18] images arranged in a “flip book” where
we can see this covering operation taking place, through a succession of animated images.

FIG. 15. The Boy surface.

In figure 15-a the meridians of the surface, converging towards its unique pole. In figure 15-b the neighborhoods of
three meridians: Möbius strips with a half-turn. In figure 15-c we see, in its mirror image, its triple point, which the
cut allows us to see in the object located in the foreground. What must be understood is that this triple point and
the trifoliate self-intersection set are only accidents linked to the impossibility of plunging the projective space P2
into R3. We can only represent it in the form of an immersion, where it then intersects itself. The same is true for the
Klein bottle K2 which is then equipped with an intersection curve in the form of a simple circle. Figure 15 illustrates
the fact that the two-sheet covering configuration generates a T-symmetric linking the two portions of space-time
opposite each other. It also generates an enantiomorphy, an induced P-symmetry. See figure 16.
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FIG. 16. Induced enantiomorphism relationship between adjacent portions of spacetime. On the left, covering of the equatorial
neighborhood. On the right, of a meridian.

Thus this operation results in a PT-symmetry connecting the adjacent portions of space-time. By configuring a
four-dimensional space-time as a two-sheet covering of a P4 projective, we also see this PT symmetry appear. In
chapter 5 of reference [19] we will find, with the first evocation of the geometric translation of C-symmetry by inversion
of an additional dimension, a presentation of relativity in 5 dimensions. We could then consider the configuration of
an S5 sphere as a two-sheet covering of a P5 projective. But in this case the desired induced CPT symmetry does not
manifest itself because odd-dimensional projectives are orientable. In [13] and [14] the idea is raised that quantum
charges can appear as invariants associated with translations in additional dimensions. This can then only concern
even-dimensional projectives: P6, P8, P10. The universe is then identified with the covering of an even-dimensional
hypersphere, with an Euler-Poincaré characteristic equal to 2, therefore endowed with two poles, according to the
two-sheet covering of the projective of the same dimension, which has a unit Euler-Poincaré characteristic, and is
therefore each time endowed with a unique pole. Note that this configuration makes it possible to envisage the
elimination of the “Big Bang-Big Crunch” singularity. Using a 2D image:

FIG. 17. Elimination of the singularity.

A tubular passage will be provided between the two poles, which the operation has brought into coincidence. On
the right, this operation is illustrated on the neighborhood of a world line, a meridian curve of the projective P2.
Note that, in this modification of the "initial singularity", an inversion of the arrow of time, a T-symmetry, occurs.
The topology then corresponds to the configuration of a torus T2, configured as a two-layer covering of a Klein bottle
K2. This space-time thus configured becomes non-contractile. The Klein bottle K2 having a zero Euler-Poincaré
characteristic can be provided with a regular tiling, see figure 18-a. Figure 18-b shows the two-layer covering of the
two-dimensional Klein bottle.
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FIG. 18. Klein K2 bottle (a) and its two-layer coating (b).

Adding pairs of dimensions results in the two-sheet covering of hypertorus T4, T6, T8. In 4 dimensions we will
have a PT-symmetry, the function operating through a throat sphere. In 2D the passage of a throat circle can be
assimilated to the sliding of a triangle crossing “a hole”. After passing over the “back” of this 2-surface, the orientations
of the black and gray triangles are inverse.

FIG. 19. Inversion of a triangle after crossing the throat circle.

The orientation of a 3D space can be achieved by providing the triangular faces of a tetrahedron with a direction
of travel, orienting their normal vectors. Although this is more difficult to imagine, a throat sphere can connect two
enantiomorphic three-dimensional spaces. For the triangle, in 2D we operated the crossing of the throat circle of its
three vertices. The same thing in 3D with successive crossing of the four points constituting the four vertices of a
tetrahedron. We note that the operation reverses the normal vectors of the four faces.
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FIG. 20. P-symmetry when crossing the throat sphere.

By limiting ourselves to the four-dimensional, we see here the deployment of the geometric approach that served
as a starting point for the development of the Janus cosmological model, which models the interaction between two
sheets of space-time, as a covering of an M4 manifold. What about this inversion of the time coordinate? The answer
then emerges, as mentioned above, from the theory of dynamical groups, which shows that this inversion of the time
coordinate, this T-symmetry, is synonymous with inversion of energy and mass. At the stage we are at, using the
tools of topology and group theory, we have a geometric model in the form of a two-sheet covering of a Lorentzian
manifold by symmetric CPT sheets. It remains to make these two entities interact.

V. CONSTRUCTION OF BIMETRIC SYSTEMS

The points of the manifold of which our space-time hypersurface is the two-sheet covering are located using coor-
dinates ξ0, ξ1, ξ2, ξ3. We will equip the two adjacent sheets with Lorentzian metrics gµν(ξi) and gµν(ξi). The masses
m and (̄m) of the two sheets will follow their non-zero length geodesics while the photons, with positive energy in
one of the sheets and negative energy in the second, will follow the zero-length geodesics. Using these two metrics we
construct the Ricci tensors Rµν and Rµν as well as the corresponding Ricci scalars R and R. In the model of general
relativity the Einstein-Hilbert action is written:

J =
∫

(R− χL)
√

−g d4x (9)

Where L is the Lagrangian of matter, χ the Einstein constant and
√

−g d4x the four-dimensional hypervolume. By
performing a variation δgµν in the functional space of Lorentzian metrics, we express that δJ = 0. Taking into account
the fact that:

δ

∫
R

√
−g d4x =

∫ (
Rµν − 1

2Rgµν

) √
−g d4x (10)

And by posing:

δ

∫
L

√
−g d4x =

∫
δ(L

√
−g)

δgµν
δgµν d4x =

∫
Tµν

√
−g δgµν d4x (11)

We obtain Einstein’s equation, without the cosmological constant Λ:

Rµν − 1
2Rgµν = χTµν (12)

By analogy, the action of a bimetric system is written:

J =
∫ [

(R− χL)
√

−g + (R− χL)
√

−g + I
]
d4x (13)

Where I is an interaction term. With :
δI

δgµν
= −

√
−g Kµν

δI

δgµν = −
√

−g Kµν (14)
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We then obtain the system of two coupled field equations:

Rµν − 1
2Rgµν = χ [Tµν +Kµν ] (15)

Rµν − 1
2Rgµν = χ

[
Tµν +Kµν

]
(16)

In reference [20] the authors designate the two metrics by gL
µν (left) and gR

µν (right). By introducing (we adapt their
notations to ours) an equivalent elementary hypervolume (gg) 1

4 d4x , they define their interaction term according to:

I = −µ4 (gg) 1
4 V (g, g) (17)

By further choosing χ = χ = 1. Their system is then written:

Rµν − 1
2Rgµν = Tµν +Kµν (18)

Rµν − 1
2Rgµν = Tµν +Kµν (19)

Tµν and Tµν represent the source terms, representing the two contributions to the matter fields m and m. The terms
Kµν and Kµν represent two interaction tensors. ∇v and ∇v being the two covariant derivations, constructed from
the metrics gµν and gµν , we know that we have:

∇ν

(
Rµν − 1

2Rgµν

)
= ∇ν

(
Rµν − 1

2Rgµν

)
= 0 (20)

If the relationships:

∇νTµν = ∇ν
Tµν (21)

translate the conservation of the two species of matter, this implies a constraint which determines the form of the
interaction tensors Kµν and Kµν :

∇νKµν = ∇ν
Kµν (22)

The geometric context of reference [20] is not clearly defined and is assumed to be located in the fuzzy world of
branes. The second matter remains undefined, and they consider making the two species interact, in a context of
massive multigravity, by implementing gravitons with a mass spectrum. Based on the alleged existence of "a gap
between light gravitons and heavy gravitons," they decide to consider only the former and then attempt to shape their
interaction tensors in different contexts, brane models, Kaluza-Klein models, Connes’ non-commutative geometry,
without arriving at a result likely to lead to a confrontation with observational data. At no point does the desire
appear that the second matter could be assimilated to a population of negative masses.

In reference [21] a symmetry between gravitating and anti-gravitating particles is examined. In a later article
reference [22] the author proposes an action and a system of two field equations where in the interaction terms appear
the factor

√
g
g and its inverse. But here again the implicit hypothesis appears besides χ = χ = 1 and no tangible

result is obtained.

VI. TOWARDS THE SYSTEM OF TWO FIELD EQUATIONS OF THE JANUS MODEL

Adjacent points are identified by a common set of coordinates, which are simple, dimensionless numbers.

{ξ0, ξ1, ξ2, ξ3} (23)

ξ =
√

(ξ1)2 + (ξ2)2 + (ξ3)2 (24)
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Let us introduce time and space gauges according to:

t = τξ0 t = τξ0 (25)

r = aξ r = aξ (26)

We will show that by opting for χ = −χ we will find the diagram of the Newtonian interaction forces between
elements, corresponding to the one which, chosen heuristically, has been used profitably. To simplify and find the
direction of the forces we will assume identical values of the constant of gravity (G = G) and of the speed of light
(c = c) in the two sheets, as well as identical space and time gauges (|τ | = τ ; a = a), which amounts to considering
locating the points with the same coordinates:

(t, x, y, z) with r =
√

(x2 + y2 + z2 (27)

We can then consider the conditions of the Newtonian approximation:

- Weak fields

- Low speeds compared to the speed of light This translates, geometrically, to the approximation :

gµν
∼= ηµν + ϵγµν gµν

∼= ηµν + ϵγµν (28)

ϵ being a small parameter and ηµν the Lorentz metric. The following two source tensors will also be of the form:

Tµν
∼=

 ϵρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Tµν
∼=

 ϵρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (29)

We denote by ρ and ρ, the densities of the masses m and m. Considering that the action of one type of mass on
the other is also a disturbance, we can write:

Kµν
∼=

 ϵK00 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Kµν
∼=


ϵK00 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (30)

We know that we can then develop in series of first members where only the first order terms γ00 and γ00 remain,
in the form of two second derivatives, according to:

∂2γ00

∂x2 + ∂2γ00

∂y2 + ∂2γ00

∂z2 = −χ (ρ+K00) (31)

∂2γ00
∂x2 + ∂2γ00

∂y2 + ∂2γ00
∂z2 = −χ (ρ+K00) (32)

Let us first consider, in a stationary regime, a region of space-time where the masses m would be absent. The
first equation is then identified with Einstein’s equation, with the equation of general relativity. In this Newtonian
approximation the motion of a witness particle corresponds to the equation:

d2xi

dt2
= −c2

2 ϵ
∂γ00

∂xi
(33)

It is the movement of a witness particle subjected to a force deriving from the Newtonian potential:

ψ = c2

2 ϵ γ00 (34)

Two masses m attract each other according to Newton’s law, which emerges from the field equation, and it is by
identifying the equation:

∂2γ00

∂x2 + ∂2γ00

∂y2 + ∂2γ00

∂z2 = −χρ (35)
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To the Poisson equation :

∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2 = 4πGρ (36)

that we determine the value of the Einstein constant χ for which, in this bimetric model, we will give the value:

χ = −8πG
c2 (37)

Before we consider the action of the interaction terms, let us instead consider a region of space-time where only
negative mass is present. In the Newtonian approximation the second equation becomes:

∂2γ00
∂x2 + ∂2γ00

∂y2 + ∂2γ00
∂z2 = −χρ (38)

The motion of a witness particle (of mass m = −1) will also be Newtonian, corresponding to the equation:

d2xi

dt2
= −c2

2 ϵ
∂γ00
∂xi

(39)

Which we will connect to a potential:

ψ = c2

2 ϵ γ00 (40)

To fit with our heuristic assumptions, we want these particles of negative masses to attract each other. It is
therefore necessary that this γ created by this negative mass distribution ρ is equal to the γ00 , created by an
equivalent distribution of positive masses ρ = −ρ. Which amounts to saying that we will have to find the same
Poisson equation. This will be possible if the equivalent of the Einstein constant in the second system corresponds to:

χ = −χ (41)

So our system of two coupled field equations becomes:

Rµν − 1
2Rgµν = χ [Tµν +Kµν ] (42)

Rµν − 1
2Rgµν = χ

[
Tµν +Kµν

]
(43)

In ref. [20, 21] and [22], the authors, by immediately assuming in their bimetric systems χ = χ = 1, could not
influence this latitude of choice of the "Einstein constant" χ, and in particular its sign, in the second system. We must
now consider how masses of opposite signs interact. We should note that nothing, for the moment, imposes the form
of the two interaction tensors, Kµν and Kµν , except for the mathematical constraint of zero divergence ref.[23], to
which we will return later. The only detractor of our theory (ref.[23, 24]), who bases his criticism on a non-satisfaction
of these Bianchi conditions, has persisted since 2019 in basing himself on the idea that these interaction tensors are
identical to the corresponding source tensors, that is to say that:

Kµν = Tµν Kµν = Tµν (44)

But this has never been the case. Let’s return to these two typical configurations where only a single type of matter
exists in regions of space. Still applying the Newtonian approximation, we are led to consider two cases:

- Cases where only positive mass is present, the action on a negative reference mass is then associated with
Poisson’s equation:

∂2γ00
∂x2 + ∂2γ00

∂y2 + ∂2γ00
∂z2 = −4πGK00 (45)

- Case where only the negative mass is present, the action on a positive witness mass is then associated with the
Poisson equation.

∂2γ00

∂x2 + ∂2γ00

∂y2 + ∂2γ00

∂z2 = 4πGK00 (46)
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For the masses of opposing signs to repel each other it is necessary and sufficient that:

K00 < 0 K00 > 0 (47)

We have deliberately used a letter K to denote the interaction tensors Kµν and Kµν , to avoid that readers confuse
them with the source tensors Tµν and Tµν . This confusion remains possible in ref.[25] where we have used a capital
letter T , in a different font:

FIG. 21. Interaction tensors in the reference [25].

the positive mass side and negative energy in the negative side. In terms of observations, the presence of an invisible
negative mass conglomerate will result in a negative gravitational lensing effect.

VII. FIRST OBSERVATIONAL CONFIRMATIONS

We have therefore justified the heuristic hypothesis which had provided us with interesting simulation results. We
therefore have, as it stands:

FIG. 22. Comparative bimetric interaction laws.

We can therefore make an initial assessment of the agreements with observations. Two cases arise:
The Janus Model provides alternative interpretations to those of the ΛCDM model, for :

- Large-scale structure.

- Confinement of galaxies.

- Flat rotation curves at the periphery.

- Gravitational lensing effects in the vicinity of galaxies and clusters.

To this we will add another element (ref. [1, 26, 27]), but which is beyond the scope of this article :

- The Janus model provides an alternative interpretation of inflation by proposing a primitive phase in a regime
of "variable constants".

In the following, when the ΛCDM model does not provide an explanation, the Janus Cosmological Model :

- Accounts for the runaway motion of galaxies in the vicinity of gaps in the large-scale structure by attributing it
to the presence at the center of the structure of a repulsive, negative-mass cluster.

- Explains the non-observation of the invisible components of the universe.
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- Gives the identity of these invisible components (negative-mass anti-H and anti-He).

- Explains the early birth of galaxies and stars.

- Justifies the absence of observation of primordial antimatter.

- Explains the formation of perennial spiral structures.

- Predicted the fall of laboratory-created antimatter into the Earth’s field.
Regarding the last point, the group approach (Janus group [13, 14, 25], [13], [24]) establishes that the matter-

antimatter duality (C-symmetry) also exists in the world of negative masses. There are therefore two antimatters:
- The C-symmetric of our matter, with positive mass.

- The PT-symmetric of our matter, with negative mass.
Hence the prediction, which has been confirmed, that laboratory-created antimatter "falls downward." Furthermore,

the "CPT theorem" is based on the assumption that the quantum time-reversal operator T is antisymmetric, and
therefore reverses neither energy nor mass. In the Janus model, the symmetric CPT of our positive-mass matter is
a copy of this, but assigned a negative mass due to T symmetry. See below. A model must also be falsifiable. The
existence of large voids in the very large-scale structure of the universe is accounted for by proposing that at their
center lies a spheroidal conglomerate of negative mass. Positive-energy photons, originating from the background,
pass through it without difficulty, since they interact with it only in a self-gravitational manner. They undergo a
negative gravitational lensing effect, which will have the effect of attenuating the luminosity of distant objects located
behind this negative-mass object. A precise luminosity map should then reveal the contours of this invisible object
and its diameter.

FIG. 23. Effect of dimming the brightness of objects located in the background of a negative mass conglomerate.

Finally, there is an observational datum for which the Standard Model has hitherto provided a very accurate model
of CMB fluctuations, based on the fitting of six parameters, including the Hubble constant. But today, due to the
so-called “Hubble tension”, the value required for the fit to the fluctuation curve turns out to be different from that
derived from direct observations.

In any case, the Janus model will also have to account for these fluctuations. This is a work in progress.

VIII. FIRST ATTEMPT AT CONSTRUCTING INTERACTION TENSOR

The Janus model does not consider producing solutions other than those that arise from the symmetry assump-
tions of general relativity. The first is the construction of a scenario describing the evolution under a hypothesis of
homogeneity and isotropy. Under these conditions, metric solutions of the form FLRW were sought. With:

dΩ2 = dθ2 + sin2θ dϕ2 (48)
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It gives :

ds2 = (dξ0)2 − a2
(

dξ2

1 − kξ
+ ξ2dΩ2

)
(49)

ds2 = (dξ0)2 − a2
(

dξ2

1 − kξ
+ ξ2dΩ2

)
(50)

An attempt to describe the matter era by making Kµν = Tµν andKµν = Tµν leads to the Dirac-Milne model
ref.[28], with a linear expansion as a function of time), where the sum ρ+ρ is then zero, as are the second members of
the two equations, which ensures the satisfaction of the Bianchi conditions in a trivial way. In this model the densities
of the two species are equal. If we then try to reconstruct the very large-scale structure of the universe, we no longer
obtain a lacunar structure, but a simple percolation:

FIG. 24. Large-scale structure for |ρ| = ρ [5].

Thus, the particularity of the Janus model is this total asymmetry between the two populations, that is to say:
|ρ| ≫ ρ . Is it fundamental? We think not, and that it manifests itself in the primordial era (with “variable
constants”) from a situation of total symmetry. This is work in progress. Then, one of the two populations is given
a secondary role, with respect to the other. Within this population, gravitational instability will only give a set of
spheroidal conglomerates, anchoring in some way the lacunar structure of the other population. These conglomerates,
comparable to giant protostars, lose energy by emitting negative energy photons, equivalent to the red and infrared
radiation emitted by protostars. But their cooling time then exceeds the age of the universe and they cannot evolve,
harboring within them fusion reactions that would restart nucleosynthesis, which one can imagine limited to the
synthesis of antihelium, before the formation of these clusters. This world then gives birth to neither stars, nor
galaxies, nor planets, and life is consequently absent. Since this solution of total symmetry had to be abandoned,
still in an unsteady situation with isotropy and homogeneity, we then opted [13] for a modification of the equations
according to :

Rµν − 1
2Rgµν = χ

[
Tµν + ΦTµν

]
(51)

Rµν − 1
2Rgµν = −χ

[
Tµν + ΦTµν

]
(52)

Where Φ and Φ are functions of the common chronological coordinate. If we limit ourselves to the era dominated by
matter, the tensors Tµν and Tµν are then limited to the terms:

T00 = ρc2 T 00 = ρc2 (53)

By introducing the FLRW solutions into this system we obtain the solution:

Φ = a3

a3 = Φ −1 (54)

And the corresponding compatibility condition, of existence of solution:

E = ρ c2 a3 + ρ c2 a3 = Cst (55)
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which translates a generalized law of conservation of energy E. What creates the curvature, drives the geometry, and
in the case considered the dynamics of the system, is not the mass but the energy. By making the hypothesis that
this energy E is predominantly negative, we obtain two exact solutions, with negative curvature index (k = k = −1))
where the expansion of the positive population is accelerated. This solution also corresponds to that proposed by
W.Bonnor [29], in a universe dominated by negative masses.

a(ξ0) = α2 ch2(ξ0) (56)

t(ξ0) = α2
(

1 + sh(ξ0)
2 + ξ0

)
(57)

We then obtain the following curve, which cannot be continued in the radiative era, towards the origin.

FIG. 25. Expansion of the population of positive masses, during the phase dominated by matter [13], [29].

An expansion law which then turned out to fit with the first observational data.
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FIG. 26. Comparison with observational data [30]. Magnitude as a function of redshift

Still with a view to falsifiability, the Janus model predicted, ten years ago [13], that the phenomenon of acceleration
of cosmic expansion would diminish over time.

IX. NEW OBSERVATIONAL DATA INVALIDATE THE STANDARD MODEL ΛCDM

Recent observational data [31] tend to confirm this prediction, which the ΛCDM model cannot account for, for
which the observable universe must imperatively follow an exponential expansion:

FIG. 27. Comparative schematic evolutions of cosmic expansion
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We therefore have a third category of observational comparisons with theoretical predictions. This is the case
where:

- The Janus model’s predictions are confirmed, for an observational fact that the standard model, the ΛCDM
model, is unable to account for.

X. STILL LOOKING FOR THE SHAPE OF INTERACTION TENSORS

We note that relation Eq. (54(55), combined with the FLRW forms of the metrics gives:

a3

a3 =
√
g

g
(58)

Which suggests a reinterpretation of the equations in the form:

Rµν − 1
2Rgµν = χ

[
Tµν +

√
g

g
Kµν

]
(59)

Rµν − 1
2Rgµν = −χ

[
Tµν +

√
g

g
Kµν

]
(60)

Still with K00 < 0 and K00 > 0, to find in Newtonian interaction laws in agreement with the principle of action-
reaction. These equations which can then be obtained from another form given to the action [25]. Does this mean
that the equations above would be “better”? We are waiting for the physicist-mathematician-geometer who will bring
out a totally accomplished, and necessary, form of these interaction tensors. All that can be said at present is that we
can give them particular forms which allow them to produce results which are positively confronted with observational
data, like this unsteady solution which not only accounts for the acceleration of the expansion, but also predicts that
this acceleration must have been more important in the past, which has just been confirmed. After this first result it
was shown with tensors, in their mixed form, of the form:

Kν
µ =

 ρc2 0 0 0
0 ϵp 0 0
0 0 ϵp 0
0 0 0 ϵp

 K
ν

µ =

 ρc2 0 0 0
0 ϵp 0 0
0 0 ϵp 0
0 0 0 ϵp

 (61)

That is to say, derivatives of the tensors and where we assign the pressure terms a small parameter ϵ, by changing
their sign, that we obtain, in a stationary regime in spherical symmetry, a satisfaction of the Bianchi conditions to
the second order ([32], [25]). We must not forget that these conditions ensuring the mathematical consistency of the
equations, in fact cover conservation relations, of energy in section VIII, and of equilibrium between pressure and the
force of gravity inside the masses in section X.

XI. GEOMETRIC MODELING OF THE GEOMETRY INSIDE AND OUTSIDE THE DIPOLE
REPELLER

In this object the density remains limited. The above approximation can then be suitable. What matters to us
then is to construct the induced geometry, the metric gµν , not only outside the object, but also inside it, since positive
energy photons can pass through it freely. This is to be able to calculate the attenuation of the brightness of the
sources located in the background and to be able to compare this calculation result with the observation data. We
will therefore have to construct two metrics: An external metric gext

µν translating the induced geometry, outside the
object. This will have the form:

ds2 =
(

1 − 2GM
c2 r

)
c2dt2 − dr2

1 − 2GM
c2 r

− r2 dΩ2 (62)

M being the (negative) mass of the (invisible) object. For the geometry inside the object, we will assimilate it to a
spherical mass filled with a negative mass of constant density ρ < 0. We will then linearize an interior Schwarzschild
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metric gint
µν , remembering that, technically (in linear and non-linear), everything happens as if a light ray passing

through the object, passing through the object, was deflected by a quantity of negative mass equal to 4
3πd

3ρ, d being
the distance at which the ray would pass from the center of gravity of the object, if it were not deflected.

FIG. 28. Schematic deflection of light rays passing through the object or passing nearby

We are therefore perfectly able to construct this calculation data in order to be able to compare it with future
observational data. Under these conditions, the rays that will undergo maximum deflection will be those that graze
the surface of the object. Such a configuration should make it possible to construct a map where the magnitude
attenuation would be maximum in a corona.

FIG. 29. Annular magnitude attenuation prediction

XII. MODELING THE GEOMETRY INSIDE AND OUTSIDE A NEUTRON STAR

The system of field equations is then:

Rµν − 1
2Rgµν = χTµν (63)

Rµν − 1
2Rgµν = −χKµν (64)
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Karl Schwarzschild provided the pair of exact, non-linear solutions (gint
µν , gext

µν ) of the first equation, as early as
1916. To complete and construct the solution of the second equation, it would be necessary to construct the form
of the interaction tensor, such that ∇νKµν =. But why do this? To have the second, induced metrics (gint

µν , gext
µν )

and construct the corresponding geodesics? To compare them with what observational data? None! Therefore, the
fact of not being able to define this interaction tensor does not constitute an objection to the model, contrary to the
criticisms formulated in ref. [24]. To clarify this, the Janus model will need to account for fluctuations in the CMB,
the hobbyhorse of ΛDCM supporters. This is underway. It should be noted that the alleged agreement with the
ΛCDM model, requiring the adjustment of six parameters, is undermined by the dissonance between the required
value of the Hubble constant and that deduced from observations.

XIII. THE IMPLICATIONS IN THE FIELD OF QUANTUM MECHANICS

They were immediate. Indeed, the acceleration of cosmic expansion, when attributed to negative mass, implies
the existence of negative energy states. However, these have been a priori excluded from quantum field theory by
attributing exclusively to the space inversion operator P the nature of a linear and unitary operator and to the time
inversion operator T , on the contrary, the nature of an antilinear and antiunitary operator ref.[33]. Incidentally, the
probability of existence of a state is E/m. By considering the inversion of energy without considering that of mass,
those who have considered exploring this path have immediately denied themselves access to it. The mathematician
Nathalie de Debergh, reacting to this remark in ref.[13], published articles (ref.[34–36]) showing that by freeing
themselves from this constraint, the Dirac and Schrödinger equations generate these states. We conjecture that the
inclusion of negative energy states constitutes one of the keys to the quantification of gravitation, without being the
only one. The gap separating general relativity and quantum mechanics lies in the fact that the former manages
continuous functions and even ignores the particle reality. There exists a world which, in a way, is situated halfway
between the two, that of the kinetic theory of gases, where we start from a particle reality by introducing a probability
of presence, in the form of a distribution function f , but in fact by giving up on locating them. When quantizing
the electromagnetic field, the reaction of the vacuum is taken into account, considered as a mixture of particles and
their antiparticles, with opposite electrical charges. In plasma physics, the evaluation of collision cross sections for a
Newtonian field leads to infinite values. It is by taking into account the reaction of the surrounding plasma, subjected
to the field of a particle, that the screening effect manifests itself, canceling the field beyond the Debye distance.
There is a form of similarity between these two manifestations of infinity. From the perspective of quantizing the
gravitational field, the gravitational vacuum should be considered a mixture of virtual masses of both signs. We are not
in a position to produce a structured and coherent scheme, only to point out the potential importance of integrating
negative energy states into quantum field theory. Another angle is to replace the Ricci scalar R with a curvature
probability fR, associating it with a distribution function f . Another idea is to consider a geometric translation of
the Heisenberg uncertainty principle by considering a “position-velocity” sector made up of finite elements such that
the elementary hypervolume is:

∆x∆y∆z∆v∆v∆w = h3 (65)

Another aspect: the introduction of additional dimensions (in even number). Chapter 5 of reference [19] presents
an example of geometric compactification by fibration. Finally, and this is the part of the work that we are developing
ref.[37], we can make space-time more complex, for example by replacing the Minkowski space with a Hermite space,
with metric:

ds2 = (dx0)∗dx0 − (dx1)∗dx1 − (dx2)∗dx2 − (dx3)∗dx3 (66)

With the real Gramm matrix:  1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (67)

We have as an isometry subgroup, the complex Lorentz group, defined by:

L∗ GL = G (68)

By adding to it a complex space-time translation vector C we obtain the complexified Poincaré group:(
L C
0 1

)
(69)
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By constructing the action of the group on the dual of its Lie algebra we obtain the action of the group on its space
of moments (M,P ) where M is an anti-Hermitian matrix and P the complex extension of the Energy-momentum
four-vector.

M ′ = LM L∗ + 2C P ∗ L∗ (70)

P ′ = LP (71)

These are just tools. But, despite the currently haphazard and fragmentary nature of the approach, we are convinced
that taking negative energy states into account could reveal new theoretical aspects as well as previously unsuspected
aspects of the world of physics.
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