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Abstract: We focus on the only directly usable data ftom images of hypermassive objects at
the center of the M 87 and Milky Way galaxies, namely the ratios of maximum to minimum
temperatures, in both cases very close to 3. To explain that their center remain emissive, it
has been suggested that there is some hot gaz, belonging to an accretion disk, located at the
foreground. But as this hypothetical accretion disk does not extend beyond the images, their
identification as giant black holes is questionable. After examining what led to the
emergence of the black hole theory, and evoking the alternative of gravstars, we show that
the plugstars model, where the darkening of the central part is then attributed to a
subcritical situation, is the only one that fits perfectly available observational data.

1 — Introduction.

In 1979, 63 years after the publication of his two articles by Karl Schwarzschild, L.S.Abrams
published an article entitled “The Legacy of Hilbert's error” [1]. This theme was
subsequently taken up by S.Antoci and E.E. Liebscher in 2003 [2]. These authors denounce
the alleged confusion between the original solution published by Karl Schwarzschild in 2016
[3]. In 2011, C.Corda [4] countered these criticisms by claiming that the so-called errors were
based solely on a misinterpretation of the variables. It all hinges on the fact that the various
authors, Droste and Hilbert first, relying on the fact that solutions to Einstein's equation can
be formulated in any coordinate system, allow themselves one or more successive changes
of a supposed radial coordinate under the pretext that the solution identifies with the
Lorentz metric at infinity.

(1 ds® =c’dt’ —1°(d8’ + sin* 0dg”)
What has been underestimated is the autonomy and intelligence of the solutions

emanating from this equation, revealing an underlying topology. This was identified as
early as 1917 by Herman Weyl, who wrote [6], page 794, we quote:



Dieses Linienelement charakterisiert die Geometrie, die auf
dem folgenden Rotationsparaboloid imy Euaklidischen Raum
mit den rechtwinkligen Koordinaten z,, x,. 2z gilt:

z=7)8a(r—2a),

wenn dasselbe durch orthogonale Projektion auf die Ebene
z = 0 mit den Polarkoordinaten r, & bezogen wird. Die Pro-
jektion bedeckt das AuBere des Kreises r = 2a doppelt, das
Innere iiberhaupt nicht. Beil natirlicher analytischer Fort-
setzung wird also der wirkliche Raum in dem zur Darstellung
benutzten Koordinatenraum der z; das durch r = 2a ge-
kennzeichnete Gebiet doppelt iiberdecken. Die beiden Uber-
deckungen sind durch die Kugel r = 2a, auf der sich die
Masse befindet und die MaBbestimmung singulidr wird, ge-
schieden, und man wird jene beiden Hilften als das ,,AuBere
und das ,,Jnnere* des Massenpunktes zu bezeichnen haben.

Fig.1 : Weyl, meridian equation.

Translation :

This line element characterizes the geometry that is valid on the paraboloid
of rotation

z = 4/8a(r — 2a)

in a Euclidean space with the orthogonal coordinates x1, s, z if the paraboloid
is projected orthogonally onto the z = 0 plane with the polar coordinates
r,1. The projection covers the exterior of the circle r > 2a twice, but does
not cover the interior at all. Via natural analytic continuation, the true space
will cover the domain 7 > 2a doubly in the coordinate space of the x; used to
represent it. The two coverings are separated by the sphere r = 2a on which
the mass lies and at which the metric becomes singular and one has to refer
to the two halves as the “outside” and “inside” of the point mass.

Fig.1bis : Weyl, meridian equation.



Unlike Schwarzschild, Weyl considers a structure that is entirely described by the
solution of Einstein's zero second-member equation, with a view to giving masses a
topological nature that reflects a connection with a second sheet of space-time. Here we
see the concept of a two-sheet covering of an edge variety, the latter being the
Schwarzschild sphere. Not surprisingly, the hypersurface described by this non-
contractile metric has a minimal perimeter that is 2n multiplied by the Schwarschild

length (here 2a).

This topological structure was also described in 1916 by the mathematician Ludwig
Flamm [7], an article whose English translation only became available in 2012, a year
after the publication of Corda's article [4]. Remarkably, this young mathematician had
immediately given the correct interpretation of the set of two solutions that Karl
Schwarzschild, a mathematician, geometer, physicist and astronomer, had just published
([3L[8])- Indeed, Schwarzschild's description of the geometry outside and inside a
sphere filled with incompressible material of constant density corresponds to the
connection of a sphere S3 with what we might call Flamm's 3D hypersurface, along a
sphere S2. In this figure, Flamm traces the meridian associated with this 3D structure,
consisting of a circular arc connecting with a portion of a parabola.
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Fig.2 : The meridian of the 3D hypersurface solution.

The “Flamm surface” obtained by rotating this supine parabola around its axis provides
a didactic 2D image of this non-contractile 3D hypersurface. Lets’ quote Flamm'’s text

[7]:

The mass point, which generates the gravitational field, is found as the vertex S of the
meridional parabola. The surface of rotation of the Branch Sm of the parabola, as



seen in the figure, already maps to the full sectional plane thgrough the centre,
preserving the metric properties. The particularity that the point mass has a finite
circumference of length 2ma., as Schwarzschild has already emphasized, is clearly

noticeable in the figure.

End of quote.
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Fig.3 : Flamm surface [10]

But it would be wrong to confuse the geodesics of this 2-surface with the geodesics of
the 3-surface connecting with the portion of sphere S3 along a sphere S2 . Flamm takes
up the complete work of K. Schwarzschild, but does not rule out considering the non-
contractile 3D hypersurface resulting from the external metric, considered in isolation,
as the representation of a mass, as Weyl does, and as Einstein and Rosen would later do
in 1935 [9]. Figure 3, taken from [10], also illustrates the topology derived from the
Schwarzschild outer metric. This illustration is all the more telling in that it relies on a
new variable which, on its own, can describe both layers, depending on the change of
variable, applied to what is considered the “standard formulation of the Schwarzschild
solution”:
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This change of coordinate being [10]:
(3) R=a[ 1+L chp |
Which gives :

L ch 1+L ch
(4) ds” = ﬁczdﬁ _R? % th’pdp® — R( 1+ L, chp )’ d0° +sin’ 0do? )
nchp chp

n

This formulation then describes the object in its entirety, integrating its non-
contractibility. It is made up of two layers, one for p varying from +oo to 0 and the

other from 0 to — oo, connecting on the Schwarzschild sphere, corresponds to the value
p=0. The above elements show that C.Corda [4] did not understand the topological

nature of the problem. Correctly interpreted, the object is non-contractile and free of
central singularity.

2 - Space-time according to Hilbert.

Historians of science have published meticulous analyses [11] of these articles by David
Hilbert ([12],[13]). It's worth putting them into context. At the start of his career, Hilbert
could not imagine that the mathematics in which he evolved, the “pure mathematics”
that seemed to him to be pure abstraction, could have such close links with physics. But
his attitude subsequently changed, particularly in the course of exchanges with Einstein,
whom he invited to give lectures in Gottingen in June and July 1915, and he began to
apply the tools of modern geometry to physics. He thus succeeded in constructing a field
equation, which he published on November 20, 1915 [12], four days before Einstein
published his own. This is on page 404 of [12], in equation (21):

Unter Verwendung der vorhin eingefiihrten Bezeichnungsweise
fiir die Variationsableitungen beziiglich der g** erhalten die Gravi-
tationsgleichungen wegen (20) die Gestalt

(21) Vo K], + a;gfwz, = 0.

Das erste Glied linker Hand wird
[Vg—xlw - VJ(K;""' }Kgpw)’




Fig.4 : D.Hilbert's field equation [13].

Translation:

Using the notation introduced earlier for the variational derivatives with respect to
the g"", the gravitational equations, because of (20), take the form

[J?zK]wﬂ’—'“—@é

Gt = 0. (21)

The first term on the left hand side becomes

(V2K v = 8(Kyy— 3K 8us) s

Fig.4bis : D.Hilbert's field equation [13]

The tensor K is the Ricci tensor and the scalar K the Ricci scalar. By writing

(5) o el

v ) g

we find the general relativity equation. We will, of course, focus on Hilbert's treatment of
the spherically symmetric stationary solution of Einstein's equation, which refers to his
second paper ([12],). As in his first article, Hilbert presents his own understanding of

special relativity on the very first page of his paper:

Zundchst filhren wir an Stelle der Weltparameter w, (s =
1, 2, 3, 4) die allgemeinsten reellen Raum-Zeit-Koordinaten z,
(s = 1, 2, 3, 4) ein, indem wir
w; = %,, w, = z,, w, = 2,, w, = iz,
Fig.5 : Hilbert's space-time coordinates [13].
Translation :

general real spacetime coordinates x_ (s = 1,2, 3, 4) by putting

w, = X, Wy = Xy, w3 = X3, W, = ixg,

First we introduce in place of the world parameters w_ (s = 1, 2, 3,4) the most

Fg.5bis : Hilbert's space-time coordinates [15].



We underlined in red the letter i in front of x4. Which is not the only thing to be found in
this document, which stands as an important document for the history of science and the
evolution of scientific ideas. This extract illustrates the way Hilbert represented the
world of relativity: with a purely imaginary w4 time coordinate. How could this be
possible? Let's not forget that in 1916 nobody imagined that the universe had a history,
so much so that when Einstein envisaged his first model he counted on the introduction
of the cosmological constant as the keystone of a stationary universe. Quantum
mechanics has yet to take off. At most, we know about the electron, identified as an
electrically charged particle whose existence has only just been confirmed. The only
known forces are electromagnetism and gravity. The article “Fundamentals of Physics”
is often described as the first attempt to create a Theory of Everything. Although Hilbert
makes no allusion to it, we may well wonder whether behind this attempt was not an
attempt to understand the world as a whole, through mathematics.

Hilbert was born into a Protestant family in 1862. He was brought up in a religious
school, but when he wrote his articles, at the age of 53, he declared himself an agnostic.
He says and writes that science, and mathematics in particular, provides the logical
answers, one after the other, in their own time. Engraved on his tombstone is his motto:
“Wir miissen wissen, wir werden wissen”: “We must know and we will know”. In 1916,
the universe seemed to be governed by two unique forces: gravitation and
electromagnetism. The construction of a field equation using an action seemed to
Hilbert to be the ultimate tool, and many authors described his two papers as an
“attempt to construct everything”, a TOE, theory of everything. Einstein cherished the
same dream until his death of a “unified field theory”. Today, we know that it's
impossible to marry gravitation and electromagnetism without adding an extra
dimension (Kaluza space). But Einstein and Hilbert didn't know this. In 1916, we didn't
know that the cosmos was evolving, that billions of years earlier it had taken on a very
different face. It's hard to imagine that Hilbert, who was unaware of this, wasn't trying to
sketch out a scenario for the creation of the universe in his essay. If we decode his
approach, the universe is initially a four-dimensional “pseudo-Euclidean” space with

coordinates of { WL, W, W, W, } Everything can be written in this context: the field

equation, geodesics, planet trajectories and perhaps electron trajectories. Everything is
in place. All that remains is to launch the machine, to create time. Hilbert does this by
writing that, which he calls I in his reworking of Schwarzschild's solution, is equal to i t,
that this chronological coordinate topples over, revealing its true nature: it is purely
imaginary. Let's turn to page 65. The German text shows a four-dimensional “pseudo-
Euclidean” space with coordinate.



die Grundlagen der Physik. 6b

Dazu kehren wir wieder zu den urspriinglichen Weltkoordi-
naten meiner ersten Mitteilung

W, =2, W,=2, W =12, W, =i

zuriick und erteilen den g,, die entsprechende Bedeutung.
Im Falle der pseudo-Euklidischen Geometrie haben wir

oy = 0

u»

worin
d‘u_u S 1! dyr == 0 (p + V)

bedeutet. Fiir jede dieser pseudo-Euklidischen Geometrie benach-
barte Mafibestimmung gilt der Ansatz

(37) .’/.uv e d;n 1 ei’;n i

wo & eine gegen Null konvergierende Grife und 7, Funktionen
der w, sind. , e

Fig.6 : Hilbert [13] page 65.

Translation :

DAVID HILBERT

Pour cela, nous revenons aux coordonnées du monde original de ma premiéere
communication

Wy =X;, Wy =Xz, W3 =Xz W3 =IXg,
et donnons la signification correspondante aux g, .
Dans le cas de la géométrie pseudo-euclidienne, nous avons
gyv B suv
ou
Suu=1 8,y=0(u=v)
Pour chaque métrique dans le voisinage de cette géométrie pseudo-euclidienne, |'ansatz

Guv = Ouy + €hyy + -

est valide, ol ¢ est une quantité tendant vers zéro, et h,, sont des fonctions dela w;.

Fig.6bis : Hilbert [13] page 65,



In (37) you have a striking proof of Hilbert's vision of space-time. The zero-order term is
the universe before time manifested itself, before the pre-existing geodesic paths that
the planets will have to follow when time creates motion. Hilbert calls this original

universe pseudo-Euclidean. Its metric tensor corresponds to the Kronecker matrix Sw,
or unit matrix. And what the universe contains will never be more than a tiny

perturbation of a quasi-flat space. In passing, you discover the origin of the signature
change, in equation (35):

Die oben genannte geometrische Frage lduft daranf hinaus,
zu untersuchen, ob und unter welchen Voraussetzungen die vier-
dimensionale Euklidische Psendogeometrie

(35) 9u = 1, Gy = 1, Jss = 13 Ju = -1

9o =0 (uF)
eine Losung der physikalischen Grundgleichungen bez. die einzige
reguldre Losung derselben ist.

Fig.7 : The origin of the metric change [13]

The geometrical question mentioned above amounts to the investigation, whether
and under what conditions the four-dimensional Euclidean pseudo-geometry

gn =1, 8»n =1, gn =1, 84s = -1

(35)
Buv =0 (n=v)

is a solution, or even the only regular solution, of the basic physical equations.

Fig.7bis : The origin of the metric change

For Hilbert, space is first, time only second. This manifestation of the appearance of
time can only be written in the following sequences:

gll dle + g22 dw22 + g33 dVV'S2 + g44 d\N42

(6)

gy dX12 T2y dxzz +8; dX32 — 844 dx42

Before 1939, all mathematicians used the signature (+-—-—), i.e,, in particular, they
wrote the Lorentz metric
(7) ds® =c’dt’ —dx* —dy’ —dz’
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The fact that velocities cannot exceed c simply translates into the requirement that the
length ds be real. This length s is then identified with the proper time t using the
relation s=c7. In the post-war period, this gradually changed to :

(8) ds® =—c’dt’ + dx*> + dy” +dz’

Paradoxically, if the velocity is less than c, the length element becomes purely imaginary
and can no longer be identified with the proper time. To obtain the latter, we need to
write:

9) dr= LT (Cede 1 dx +dy +d2h) =L [~ ds?
C C

Nowhere in the literature can we find an article, or even an argument, justifying this
universally practiced generalization of the transition to a signature (—+++) or

(+++—). Yet this disconcerting definition of proper time is to be found in Hilbert's

1916 article . It should be noted that the term does not appear at any point in either of
his articles. What he is concerned with is a bilinear form :

Wir konstruieren nun in einem jeden Punkte z,, z, z, desselben
die zu ihm orthogonale geodétische Linie, die eine Zeitlinie sein
wird, und tragen auf derselben z, als Eigenzeit auf; dem so er-
haltenen Punkte der vierdimensionalen Welt weisen wir die Koor-
dinatenwerte z,z,2,x, zu. Fiir diese Koordinaten wird, wie leicht
zu sehen ist,

1,23
(32) G(X) = 3 guXuX - X{
uv

Fig.8 : Hilbert's bilinear form. [13]

I would like to call it; | let x,, x,, x; be any point coordinates of this space. We now
construct at every point x, x,, x; of this space the geodesic orthogonal to it, which
will be a time line, and on this line we mark off x, as proper time; the point in the
four-dimensional world so obtained is given coordinate values x,x,x;x,. In these
coordinates we have, as is easily seen,

1,2,3 5
G(X, = 2 g X, X, — Xy, (32)
T8y

Fig. 8bis: Hilbert's bilinear form.
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Hilbert studies the mathematical properties of a bilinear form (32). It doesn't occur to
him to describe:

12,3
2 . 2
(10) =Y g,X,X, -X,
Ww,v
or, in differential form:
1,2,3

(11) ds’ = 2 8,y dxudxv — dx42
[TRY

In fact, we imagine that he doesn't “visualize” this 4D hypersurface at all. He can
therefore, without the slightest problem, equip this shape with two different lengths:

nicht sein Vorzeichen dndert: ein Kurvenstiick, fiir welches

. 0%,
(r(dp)>0

ausfillt, heiBe eine Strecke und das ldngs dieses Kurvenstiicks ge-
nommene Integral

_ [\/a(%)
2= Vo)
heifle die Linge der Strecke; ein Kurvenstiick, fiir welches

G(%%‘) <0

ausfillt, heife eine Zeitlinic und das lings dieses Kurvenstiickes

genommene Integral
dx,

heiBe die Figenseit der Zeitlinie; endlich heifie ein Kurvenstiick,

lings dessen
,{ dz,

wird, eine Nullinie.

Fig. 9: The two Hilbert lengths [13]
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A piece of the curve for which
G(a-:'-r-“) >0
dp
shall be called a segment and the integral along this piece of curve
dx
A= G(z,)dp
shall be the length of the segment; a piece of the curve for which
G(‘.j_x_“) <0
dp
will be called a time line, and the integral
dx
v=J -6 ap

evaluated along this piece of curve shall be the proper time of the time line; finally a
piece of curve along which

6 = 0
T -

shall be called a null line.

Fig. 9bis: The two Hilbert lengths

We find the definition of proper time t. But what is the significance of this second length
A? It evokes some “other physics”. The fact that Hilbert's attempt to describe the
universe in terms of two different lengths never came to fruition has not attracted the
attention of commentators. Does this mean that Hilbert, in his Theory of Everything,
envisaged the beginnings of a metaphysics?

Here, then, is mathematician David Hilbert's rather singular conception of the geometry
of space-time.

3 - Comparative constructions of the stationary solution in SO(3) symmetry of the
Einstein equation by Schwarzschild and Hilbert.

3a - The Schwarzschild’s calculation:

We've summarized these two strategies in two full-page illustrations. Let's start with
Schwarzschild's construction of the outer metric. Let's start with the first page of his
article, which corresponds to issue 189 of the journal in which it is published. We'll refer
to this pagination. What is indicated in equation (1) is extremely important.
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~ Uber das Gravitationsfeld eines Massenpunktes
nach der Emsremschen Theorie.

Von K. ScHwAaRrzsCHILD.

(Vorgelegt am 13. Januar 1916 [s. obén S. 42].)

§ 1. Hr. EmnsteEiy hat in seiner Arbeit iber die Perihelbewegung
des Merkur (s. Sitzungsberichte vom 18. November 1915) folgendes
Problem gestellt:

Ein Punkt bewege sich gem#ll der Forderung

8{ds:o, l
|

“

wobei

5= VE Gund T, AT, pv=1,2,3,4

Fig. 10 : The method followed by Schwarzschild, [49]

Translation :

ON THE GRAVITATIONAL FIELD OF A MAss POINT
ACCORDING TO EINSTEIN’S THEORY 1
BY K. SCHWARZSCHILD
(Communicated January 13th, 1916
TRANSLATIONI AND FOREWORD BY
S. Antoci* and A. Loinger’

§1. In his work on the motion of the perihelion of Mercury (see Sitzungsberichte of November
18th, 1915) Mr. Einstein has posed the following problem:
Let a point move according to the prescription:

6/ds:0,

where 1)

ds = \/Xgudzr,dz, p,v=1234,

Fig. 10bis : The method followed by Schwarzschild,
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The first of the two equations indicates that Schwarzschild will minimize the length
element s. The second equation states that this length element will necessarily be
positive or zero. These two presuppositions will subsequently be of vital importance.

On page 190, he indicates the assumptions that determine his solution, which is
supposed to be expressed in a coordinate system {x1 Xy, X5, X, } The first coordinate
refers to time, the other three to space. The components of the solution metric are

independent of time. It then specifies its conditions at infinity. The coefficients of the
metric must tend towards those of the Lorentz metric.

(12) g44:1 ’ gn:_l ) g22:_1 > g33:_1

As you can see, he opted for the signature (+———) right from the start, as did Einstein,

Droste, Weyl, Flamm and others. But in those days, it never occurred to anyone to do
otherwise. On page 191, he accounts for symmetries in his own way, then switches to
polar coordinates. His variables are real, so the variable r is necessarily positive or zero.

ScuwarzscriLp s+ Uber das Gravitationsfeld eines Massenpunktes 191
1s* = Fadt* — G {dx* +dy’ +d2")— H (a:d.ﬁ:+!/d.‘1/ +zdz)?

wobei F, G, H Funktionen von 7= V& +y* + 2" sind.
Die Forderung (4) verlangt: Fir » =co: F=G =1, H=o0.
Wenn man zu Polarkoordinaten gemiB x = rsin Scos ¢, Yy =
rsin $sin ¢, 2 =rcos & iibergeht, lautet dasselbe Linienelement:

(6)

ds® = Fdt*— G (dr* +r*dS* +r* sin’ Sdo?) — Hr* dr”
— Fit'— (G + Hr) dr* — Gr* (dS* + sin® Sd¢’).

Fig. 11 : Shift to polar coordinates [49].

§3. If one calls ¢ the time, z, y, z, the rectangular co-ordinates, the most general line element
that satisfies the conditions 1-3 is clearly the following:

ds®> = Fdt* — G(dz? + dy? + d2*) — H(zdz + ydy + 2dz)?

where F', G, H are functions of r = /22 + y2 + 22.

The condition (4) requires: for r=0c0: F=G=1,H =0.

When one goes over to polar co-ordinates according to z = rsindcos @, y = rsindsing, z =
rcos ¥, the same line element reads:

ds? = Fdt? — G(dr? + r2d¥? + r2sin*9d¢?) — Hr2dr?

‘ 6
= Fdt® — (G + Hr?)dr* — Gr®(d9® + sin®9d4?). 2
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Fig. 11bis ; Shift to polar coordinates

Schwarzschild then introduces a change of variables whose sole purpose is to facilitate
his calculation of Christoffels nd symbols:

(13) X=— , X =—-costY , X3:¢

Then he writes :

In den neuen Polarkoordinaten lautet das Linienelement:

- da] 5 .
ds* = Ft-za;:-(ﬁ_-»-—g) dxi——G/"[ i +d:v3(1—wz)] , (8)
S— T" - - H 2

I —;
wofiir wir schreiben wollen:
: * dx; < v
ds* = f,dw}—f, Az — fm e — fyday (1= 0) . (9)

2

Dann sind f,, f, = f,, f, drei Funktionen von z,, welche folgende Be
dingungen zu erfiillen haben: )

I 4 - ) ’ " o2 k‘___
L Fﬁl‘:l:xzoo:j;:?-:@.l’,) B =f=r=(3%)", 2, =1

2. Die Determinantengleichung: f.-f.-f,-f, = I.
3. Die Feldgleichungen.
4. Die f stetig, auBer fur x, =0.

Fig. 12 : The Schwarzschild metric in its new coordinates [49]..

Trabslation :
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In the new coordinates the line element becomes:

G H dx2
ds? = Fde — (,—4+'—2) de‘ — Gr? (1 - xzz + dxg(l — x%)) ; (8)
Or: 3
2 2 2 dx; 2 2
ds® = fadxg — Xy — fo7— 5~ fadx3(1—x3), 9
2

fi:f2:= f3, fa must fullfil the following conditions:

1 = 2
1. Forxy =o:fi === (3x)"73 Jo=fa=12=03x)3 ,x,=1

N

. Determinant; fi*fob+fa+fa=1
. Field equations. -
. Continuous f functions outside x; =0

=W

Fig. 12 bis : The Schwarzschild metric in its new coordinates

Schwarzschild then calculates the coordinates of the Ricci tensor using Christoffel's
symbols. All calculations done, he obtains:

His equation (12):

4/3

3x,+p)”
(14) = (X, *p) =Y
l-—o(3x,+p)
His equation (10):
(15) f,=(3x,+p)”"
Page 194 he precises that:
(16) f,=f,=(3x,+p)”"
His equation (11):
(17) f,=1-0a(3x,+p)™"

In his equation (13) he precises that p = o’ . Replacing x1 by r3/3 gives :

(18)
ds’ =

(r3+a3)l/3_a ) s I.4

(r’ +ao’)” - (r3+oc3)[(r3+oc3)”3—oc]

dr’— (r’ +0)**(d6’ +sin’0de?)

o is what will later be called the Schwarzschild length. No one has ever explained what
is the true expression of the original solution found by Schwarzschild in January 1916,
108 years ago, expressed using the coordinates he defined at the beginning of his article:

(19) {t,x,y,z,} - {t,I':\/X2+y2+Z2 ,13,(1),}
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Nor has anyone examined its properties for over a century. Let's do it. Asr tends to zero,

. : . 0
g, tends to zero. The term g gives the indeterminate form— ,and the terms g , and
0

g, 8ive:

(20) f, — (r’+ao’)*? f,— (r’+a’ ) sin’ O

The non-contractile nature of the 4-dimensional hypersurface comes to the fore. When,
att=Cst,r=Cst, 9=mn/2, we calculate the length :

(21) p=] (o) do=2m (r+a’)"

this perimeter has, for r = 0, the minimal value 2mo.. We now turn to David Hilbert's
article [13]:

3a - Hilbert calculus:

On page 67 of the original article, he begins by setting out his hypotheses:

Die Annahmen iiber die g,, sind folgende:
1. Die MaBbestimmung ist aunf ein Gauflisches Koordinaten-
system bezogen — nur daB g, noch willkiirlich gelassen wird;
d. h. es ist

T = 0, T = 0, 93¢ = 0.

2. Die g., sind von der Zeitkoordinate z, unabhiingig.

3. Die Gravitation g,, ist zentrisch symmetrisch in Bezug
auf den Koordinatenanfangspunkt.

Nach Schwarzschild ist die allgemeinste diesen Annahmen
entsprechende Mafibestimmung in rdumlichen Polarkoordinaten, wenn

w, = recosd

w, = rsincos @
w, = rsmdsing
w, = 1

4

gesetzt wird, durch den Ausdruck

(42) F () dr* + G (r) (d9® + sin* 9dg®) + H(r)dl

Fig.13 : Hilbert's assumptions [13]
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W

The assumptions about the g, are the following:

. The mefric is represented in a Gaussian coordinate system, except that g, is left

arbitrary, i.e. we have
g1a =0, 84 =0, gxu = 0.

The g, are mdependent of the time coordinate x,.

The gravitation g is centrally symmetric with respect to the origin of coordi-
nates.

According to Schwarzschild the most general metric conforming to these assump-

tions 1s represented in polar coordmates, where

w, = rcost
w, = rsinffcosg
wy = rsindsing
w, =1,
by the expression
F(r)dr* + G(r)(d9* + sin*8dg?) + H(r)dI? (42)

where F(r), G(r), H(r) are still arbitrary functions of r.

Fig.13 bis : Hilbert's assumptions

This expression of the metric (like the one Schwarzschild opted for) is not the
most general, given the initial assumptions: independence with respect to time,

spherical symmetry, but we'll see that later.

Hilbert resumes his vision of a universe with a signature metric

His formulation (42) of the bilinear form is not exactly that of Schwarzschild. See
Figures 12 and 12 bis and his equations (6). Its factor coefficient is not G but Gr2.

Consider this as a detail.

With this, Hilbert writes:
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(42) F(r)dr* + G (r) (d9* + sin* 9dg?) + H(r) dl?

dargestellt, wo F'(»), G (r), H(r) noch willkiirliche Funktionen von
r sind. Setzen wir -
"= \/G(T), S——

so sind wir in gleicher Weise berechtigt +*, &, ¢ als rdumliche
Polarkoordinaten zu deuten. Fiihren wir in (42) »* anstatt » ein und
lassen dann wieder das Zeichen * weg, so entsteht der Ausdruck

(43) M(r)dr® + r* @9* + »* sin’ & dg® + W(r)dl’,

wo M(r), W(r) die zwei wesentlichen willkiirlichen Funktionen
von » bedeaten. Die Frage ist, ob und wie diese auf die allge-
meinste Weise zu bestimmen sind, damit den Differentialgleichungen
(36) Geniige geschieht.

Fig. 14 : His so called “radial” variable r* is no longer +/ X’ +y*+z> . [13]

Translation:

expression

where F(r), G(r), H(r) are still arbitrary functions of r. If we put

r* = JGn, ———— why not

then we are equally justified in interpreting r°, #, ¢ as spatial polar coordinates. If
we introduce r* in (42) instead of r and then eliminate the sign *, the result is the

M(r)dr? + r2d®? + r2sin2dg? + m NO! (@

where M(r), W(r) mean the two essential, arbitrary functions of r. The question is
whether and how these can be determined in the most general way so that the differ-
ential equations (36) enjoy satisfaction. |

Fig. 14 bis : His so called “radial” variable r* is no longer 4/ X’ +y +z° .

It is perfectly legal to make this change of variable r*=4/ G(r) , which only requires the

determination of two unknown functions M(r*)and W(r*). but we must then write the
bilinear form (43) in the form :

(22)

M) dr® + r** (dO° +sin” 0 dd* ) + W(r)dt?
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What is this equation (36) whose solution we are looking for? It is:

(23) K V—%ng:() (36)

u

As we know that the letter K refers to the Ricci tensor and scalar, this is the Einstein
equation without a second member. The rest of the calculation can then be repeated, up
to the result, provided it is expressed using the variable r* and notr:

und, wenn wir
,c * ’c* S m

W = u

ri-m r

M =

setzen, wo nunmehr m und w die unbekannten Funktionen von r*

Fig. 15: The Hilbert’s functions M and N. [13].

Translation :

and if we put

r* r -m
M = - W= w? —
re-m re

where now m and w are the unknown functions of r* we finally obtain

Fig. 15 bis : The Hilbert’s functions M and N.

ilbert then expresses his result, i.e. the desired bilinear form:

Nehmen wir als Integrale
von (44) m = «, wo « eine Konstante ist und w = 1, was offenbar
keine wesentliche Einschridnkung bedeutet, so ergibt sich aus (43)
fiir I = it die gesuchte MaBbestimmung in der von Schwarzschild
zuerst gefundenen Gestalt

»

(45) G (dr, d#, d\¢fdl) = dr* 47 d9* +r*sin’ @ dp* — f_;ﬁ de’.

r—auo
Die Singularitdt dieser Mafibestimmung bei » = 0 fillt nur dann
fort, wenn ¢« = 0 genommen ! b

der pseud
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Fig. 16 : The result of Hilbert's calculus. [13].

Translation :

SRviicE OnetalE thit

the most general solution of equations (36) under
the assumptions 1.,2., 3., we made. If we take as integrals of (44) m = a, where a
is a constant,and w = 1, which evidently is no essential restriction, then for / = it
(43) results in the desired metric in the form first found by Schwarzschild

r ; r—a
adrz + r2d9? + r2sin? 9dg? -
r— r

G(dr, d9,dg, dl) = di*. (45)

The singularity of the metric at r = 0 disappears only if we take o = 0

Fig. 16 bis : The result of Hilbert's calculus

In his paper above, Hilbert shows that his quantities m and w, which in no way
represent the modulus of the vector(w, ,w,,w,,w, ), are constants. The constant m is

then identified with o, the Schwazrschild length, and w with the unit.

As a simple remark, using an elliptical or hyperbolic metric would not change the
projection of a geodesic trajectory onto the plane. By ignoring time, i.e. by keeping this
variable 1 Hilbert could just as well have presented his result, provided he kept his
variable r* according to

As a simple remark, using an elliptical or hyperbolic metric would not change the
projection of a geodesic trajectory onto the plane. By ignoring time, i.e. by keeping this
variable 1 Hilbert could just as well have presented his results, provided he kept his
variable r* according to:

* * —
(24) G(dr',d0,d9,d/) = ———dr* + 1+ 40 + 1 sin 0.do” + ———dI’
r*—o r
In equation (45), we find a typographical error. This result is in fact:
* r* 2 2 142 2 2 ) -0,
(25) G(dr ,d9,do,dt)= . dr* +r* dd0 4 r* sin”0do ——*dt
r*—o r

- Hilbert's mistake is to confuse his bilear form with « the form fist found by
Schwarzschild » ( « der von Schwarzschild zuerst gefundenen Gestalt ». He does
not percieve the fundamental difference between his « radial » coordinate r and
Schwarzschild’s intermediate variable R. His confusion can be seen in footnote 7,
where he writes : « To transforme the location at R = o, as Schwarzschild does (...)
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, is note recommanded in my opinion; Schwarzschild’s transformation is
moreover not the simpliest that achieves rhis goal ».

So, Hilbert thinks his own radial is the right one, and Schwarzschild only involved a
change of coordinates to place « the singularity » (but in fact is not a true singularity)
towards the origin.

Such confusion, taken up by his successors, will have incalculable consequences. It's an
error in the sense that Hilbert mentions the existence of a singularity (“in r = 0”).

Note that J.Droste [5], who is taken as a reference by C.Corda [4], commits the same
confusion. He begins by introducing the form of a metric depending on three unknown
functions, in his equation (2):

For a centre at rest and symmetrical in all direchons it is easily
seen that
ds® = w* dt* — u® dr* — v* (d9* + an® 9 dop?), . . (2)

w, u, v only depending on 7, and (&, ) representing polar coordi-
nates.

Fig. 17 : Droste, the initial form of his metric [5]

But, like Hilbert, he soon reduced the number of unknown functions to two:

) 199

The equations of the field being covariant for all transformations
of the coordmates whatever, we are at liberty to choose instead of
7 a new variable which will be such a function of 7, that in ds?
the coefficient of the square of its differential becomes umty. That
new variable we name 7 again and we put

-~

d* = wdt* — dr* — v (d9° + sin® 9 dyp?) . . . . (4
w and v only depending on r. We now find

Fig. 18: Droste [5] makes the same mistake as Hilbert.
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Note that Droste opts for the signature (+———). A at the end of this calculation, using

several successive changes of variables he produces, at the end of a final change, what
Corda calls the “Standard Schwarzschild solution”:

. . ag . ) .
-5 as? & (d9* + sin* §dp?).

o

§=—
P

This » is not the same as occurs 1n (4). We obtain

dst = (1 —3) dt® —

Lastly we put -

d e
ols? = (1 — i) 7 . r* @ + sin® Fd p*) (7)
r a

”

Fig. 19 : Final result [5].

And, finally, this new coordinate, which he always calls r, gives a quadratic form
identical to Hilbert's. But it's by no means the initial radial coordinate. But this is by no
means the original radial coordinate. Droste, unlike Hilbert, shows a certain caution,
which Hilbert did not, envisioning from the outset that a singularity could correspond to
the zero value of his variable r. Here's the passage from Droste's article :
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3. From (7) we can immediately deduce some conclusions. The
point (», ¥, ¢) lies al a distance

J:f—‘/—d;—“ . VI—— + alog ([/-— —14 l/—) (8)
' 7

1) After the communication to (he Academy of my calculations, I discovered
that also K. ScHWARzZSCHILD has calculated the field. Vid : Sitzungsberichte der
der Kon. Preuss. Akad. der Wiss. 1916, page 189. Equation (7) agrees with (14)
there, if R 1s 1ead instead of 7.

201 "

from the point, where the radius intersects sphere r =g, if 7 > a
and supposing that (7) remains valid up to 7 =«. In future we will
always make these two supposilions, as we shall see, that a moving
particle outside sphere 7 — « can never pass that sphere, we may,
m studyng its motion. disregard the space r < a. Should (7) cease
to be valid as soon as r becomes < R, we need only exclude the
space 7 < R from the conclusions which will still be made, to make
them valid again.

If » be very large with respect to «, the proportion d:7 ap-
proaches to 1. 2

The circumference of a circle » = consi. is 2ar by (7); this shows
bow » can be measured. Circle ¢ has the circumference 27,

One might in (7) perform a substitution ¢—= f(r,vr). Then a term
containing drdr would arise and the velocity ¢ of light, travelling
along r, would have to be calculated from an equation of the form

F (ra) 4+ F, (ryx)e—F, (1t) " =0
and would have fwo values, one for light coming from the centre,

the other for hght moving towards it. Moreover these values would
depend on ¢

Fig. 20 Droste, pages 200-201 [5]

These are only the conclusions of a theorist for whom everything must be real, including
the element of length ds. This implies that r > o (i.e. in Schwarzschild notation: R>a/) .

The portions of space for which r<a (i.e. R <a) are excluded from the solution.
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Droste then remarks on the possibility of a cross term in dr dt. But the way he
introduces it leads him to conclude that such a term would depend on the time
coordinate, which is by no means an obligation. More on this later.

3b - Hilbert's exploitation of his solution.

Constructing a solution to Einstein's equation means first and foremost being able to
produce geodesics. Hilbert:

Die Differéntialgleichungen der geoditischen Linien fiir das
zentrische Gravitationsfeld (45) entspringen aus dem Variations-
problem

((r (@Y, (49N, oo (d@\ r—a (dEV) .
e e e O P

Fig. 21 : Hilbert minimizes the square of the length. [13]

"The differential équations of geodesic lines for the centrally symmetric gravita-
tional field (45) arise from the variational problem

"

& — dr\*, 2 i aafdp\? r—aydt _
(A -2} o

Fig. 21 bis : Hilbert minimizes the square of the length

This approach would be adopted by many of his successors over the following century.
It should be noted that Schwarzcshild, for his part, does not write this variation of the
action integral, as does Droste:
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4. We now proceed to the calculation of the equations of motion
of a particle in the field.

The equations of motion express the fact that the first variation
of the integral

" tz

f L de
I

will be zero, if the vared positions for ¢ =1¢ and t=1"{, are the
samne as the actual ones. I represents the quantity

!
ds 2
L=(~7t'= I/] —ff—___q___ _9.383_’,1 Sin‘ 1(}‘,)2, N . (9)

Fig. 22: Droste, his Lagrangian. [5]

Translation :

4. We now proceed to the calculation of the equations of motion
of a particle in the field.

The equations of motion express the fact that the first varation
of the integral

" tz

f L dt
I

will be zero, if the vared positions for ¢ =1¢ and t=1, are the
samne as the actual ones. I represents the quantity

!
ds i
L-:‘?t: I/l — f— 9 s do* . . (9)

Fig. 22 bis ; Droste, his Lagrangian.
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2 2 2 2
SJ R [ARY o4O pognrg 40| R0 dt dp=0
R—oal\ dp dp dp R \dp

\

Lagrange eq.

2 2 2 2
1 ) (4] w22 o[ ) g
R |dp) R-aldp dp dp

Both approaches lead to the same system of Lagrange equations. These produce
geodesic curves in (R, ¢), complete in the first case, and interrupted when R <0 in the
second. With a coordinate singularity that can be eliminated. The corresponding curves
are given below

3 T T T T T 3 I I | | I

2[— - 2+ —

0r — 0+ <
-3 | | | | | -3 | ! 1 L |

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Fig.23 : Plunging geodesics. On the left, the particle falls towards the center as it spirals.
On the right, its trajectory is interrupted when it reaches the Schwarzschild sphere [50].

The part of the curve corresponding to R <o, which is algebraically real, does not enter

the realm of physics if we assume that the length measurement along this part of the
curve must be real. Before going any further, we should mention the contributions of
L.Flamm and H.Weyl.

As we shall see later, Karl Schwarzschild, who was both an excellent mathematician-
geometerist and a seasoned physicist, followed a physicist's logic. The geometric
description of the gravitational field created by a mass corresponding to a sphere filled
with incompressible material could only be achieved by connecting two metrics, the first
describing the geometry outside the mass and the second inside it..
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5 - Richard Tolman's contribution [18].

These elements, which were to form the basis of a scientific cosmology, were born in
Germany and Austria before the Second World War. These founding texts were
originally written in German, and at the time, the dissemination of ideas was achieved
through the sending of offprints, a very small number of printed copies of articles. There
were, of course, direct contacts, when authors of works came to lecture outside their
home country, as was the case when Einstein gave a series of lectures at Columbia
University and Princeton in 1921. The first to bring this body of knowledge together, in
English, was mathematician Richard Tolman, in the form of a book[18] published in
1934, which quickly gained a worldwide following. The only solution evoked was that
describing the exterior of a mass. The metric supposed to account for symmetries is as
follows:

In accordance with the static and spherically symmetrical nature of the
field which would surround an attracting point particle, it can be shown
neoessarily possible (see § 95) to choose coordinates 7, 6, ¢, and ¢ such
that the line element will be of the simple form

ds? = —e? dri—r? d62—r2sing d¢p®+-e¥ di?, (82.1)
where A and v are functions of » alone.

Fig. 24 : The Tolman metric, with its two exponential functions [18]..

The functions ¢" and e’ are introduced in such a way as to ensure the invariance of the
signature of the metric, which retains its usual formulation (+———). Note the qualifier

“static”, which is not stationary. By stationary we mean a solution that is independent of
time. By static, we mean a solution that is both time-independent and symmetrical when
t is changed to -t. There is no physical imperative to opt for this symmetry. Note,
however, that this excludes any dr dt cross term. The author then gives the result of the
calculation, identical to Droste's formula, taking into account - of little interest - the
presence of the cosmological constant in the field equation

dr? : 2m Ar
2 M 2092 __aqin2 2 _ M AT
ds 1__§_n_3,_Ar2 r? d6* —7%in%0 d¢ +(1 = 3 di?,
T 3 (96.3)

Fig. 25 : Tolman's external metric [18] .

Tolman read and spoke fluent German, which enabled him to read Schwarzchild's
second paper, from February 1916, describing the geometry inside a mass. More on this
later. But note that he makes no mention of any restrictive conditions concerning the
value of the r coordinate present in his equation (96.3).
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5 - Back to geometric considerations.

In February 1916, K.Schwarzschild completed his January paper by publishing a second
one in which he constructed a stationary, spherically symmetric solution to Einstein's
second-member equation, describing the geometry of the portion of space
corresponding to the interior of a sphere filled with an incompressible material. In terms
of spatial coordinates, he uses two angles: ¢ and y , which identify the position of a point

in the sphere. The value y =0 corresponds to the object's center and ) =, to its outer
surface. The radial coordinate is then :

(27) R= RCOSX

And this second characteristic length is:

2
(28) R= |3
8nGp,
This internal metric is written as:
3cosy —cosy ) 3¢?
(29) ds® = (Mj 2dt> =% (dy® +sin® 3 d6° + sin® y sin’ 0d6?)
2 8nGp,

We can then use this “intermediate quantity” R (« Hilsgrofe ») from Schwarzschild to
describe the geometry outside the mass. If M is the mass of the object, this metric can be
written as :

2
(30) ds? =(1— Z?Mjczdtz—%—Rz(deersinzed(pz)
c'R T
¢’ R

In 1917, F.Flamm perfectly described such an approach by cutting the four-dimensional
hypersurface to reveal its meridian. See figure 2. A form of geometric criticality arises
when we consider an object of constant density, whose mass would increase
progressively. If the density is assumed the density to be constant, so R is the
characteristic radius. The Schwarzschild radius increases as the mass increases, and
therefore as the cube of the radius. For a star like the Sun, the radius is of the order of 3
kilometers, whereas the radius is a hundred times the star's radius. We thus come up
against a first criticality, which we'll call geometric, when the Schwarzschild radius joins

this radius R . If we trace the meridian of the hypersurface, it corresponds to a half-
circle connecting with a lying half-parabola:
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Fig. 26: First form of geometric criticality.

The question then arises: what happens when the influx of matter overtakes this
situation and the description provided by K. Schwarzschild, using two connecting
metrics, is no longer adequate?

6 - Topological extensions.

These were envisaged even before it was thought that such stars could exist, in the
writings of those who attempted to represent masses using topology. Weyl is a pioneer
in this field [6]. His representation has already been mentioned in Section 1 and in the
extract from Fig. 1, but he goes further by proposing a new change of variable:



139 H. Weyl.

lungen willen transformieren mufl. Die Transformationsformeln
sollen lauten

7 P p_ {2y 1
'7"1:7‘7’1’ z2=—;zz, x3—7:cs, T = 1+?2-7-
Iasse ich nach Durchfithrung der Transformation die Akzente
wieder fort, so ergibt sich

(12) do? = (1 + %) dx?+ dz,® +dz?, = (:’;“Z%\) '

In den neuen Koordinaten ist das Linienelement des Gravi-
tationsraumes also dem Huklidischen konform ; das lineare Ver-
eroBerungsverhdltnis ist

a 2
(135
do? ist regulir fur alle Werte r > 0, f ist durchweg positiv
und wird nur fir a

r=—

2
zu Null. Der Umfang des Kreises x,% - 2,2 = 2 betract

2751‘(1 +?a;)n;

Fig.27 : Weyl isotropic coordinates. [6]

31
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This may become clearer upon introducing another coordinate system
into which I need to transform Schwarz schild’s equations at any rate in
order to proceed further. The transformation equations read

r’ r’ r a 1

/ / ! . ! 1\ 2
ry = —Iy, To = —ITy I3 = —I3; T = (r + —) =
T T T 2 T

If I remove the primes after carrying out the transformation, then

2 _ i4,2,2,2 _T—a/22
12)  do _(1+2T) (dz:2 + dzo? + dza?), f= (—Hm)

results. In the new coordinates, the line element of the gravitational space
is thus conformal to Euclidean space; the linear enlargement factor is

a 2
1+5-)
( 0 2r
do? is regular for all values 7 > 0, f is always positive and becomes zero only

for
r=—.

2

The circumference of the circle z12 4 292 = r

a2
2 (1 —) :
wr + o :

2 is

if we allow r to run over its range of values beginning with +oo, then this
function decreases monotonically until it reaches the value 4mwa for

N2

Fig.27 bis : Weyl isotropic coordinates.
Replacing r' with r is not desirable. Coordinates are only ever an attempt to read

geometry. It would have been preferable to use another letter. Thus, given that Weyl
starts from:

(31) ds* = fdt* —do’ >0

do’ designating the spatial part of the metric, we should write :

4
(32) do? = [1 + %) (dx+dx,’ +dx.)
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2
u—a/2
(33) f=l—
u+a/2
He rediscovers the non-contractile nature of the object, i.e. the perimeter of a centered
closed curve has a minimum value p=4na=2mna. But he goes further, expressing the

proper time according to :

(34) ds=4[f dt= (u_—a/zjd‘[

u+a/2

The second layer of the hypersurface is traversed for values of a ranging from a/2
(throat sphere) to zero. The above factor then becomes negative. The length element ds
cannot become negative, which means that the proper time cannot be reversed. So, to
maintain the sign of ds, the time coordinate must reverse along this second layer, as
Weyl explicitly states:

dem Innern des Massenpunktes entsprechen. Bei analytischer

Fortsetzung wird
_r—aj2
Vi= r + af2

m Innern negativ, so daB also dort fiir einen ruhenden Punkt
kosmische Zeit (x,) und Eigenzeit gegenldufig sind. (In der

Fig. 28 : Weyl: time coordinate inversion. [6]

s. When continued analytically,
ofifie r—af2
 r+a/2

becomes negative in the inside region, meaning that for a point at rest, the
cosmic time (z4) and proper time run in opposite directions.

Fig. 28 bis : Weyl: time coordinate inversion..

Here, Weyl, who is still trying to give a topological interpretation to masses, speaks of
the “interior” of such an object, which shows that he is also falling into the trap of
replacing r' with r', in the belief of constructing a new radial coordinate, going from zero
to infinity. If we return this magnitude to its character as a simple parameter, focusing
our attention solely on the intrinsic magnitude, the length s, it's clear that when u tends
towards zero, the perimeter p tends towards infinity.

- Weyl was the first, in 1916, to envisage that the geometry associated with the
Schwarzschild outer metric, considered in isolation, translates a bridge betwee two T-
symmetric spacetimes
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This representation of masses as topological singularities is also the basis of Einstein
and Rosen's 1935 paper [20]. Note, however, that this extension is not Lorentzian to
infinity.

Another type of extension [10] uses a change of variable:
(35) R=a(l+L, p)

The metric then becomes:

L chp 2d — o 1+ L, chp

(36) ds’ =
1+ L, chp L chp

th’pdp® — o> ( 1+ L, chp ) ( d67 +sin’ 0dg’ )

The two layers are then traversed by varying the coordinate p from - ooto + oo, a throat

sphere corresponding to the value p=0. On this throat sphere, the term g tends

0 . .
towards zero and the term g becomes 0 By moving p towards this zero value, a

limited development shows that g = tends towards 2, which is another way of showing

that on the throat sphere we're simply dealing with a singularity of coordinate s.

7 - The questionable use of a stationary solution to describe a highly unsteady
process.

The existence of a new particle, the neutron, became clear in 1932, just as Tolman was
writing his book. This was a time when the development of theoretical models and the
influx of experimental and observational results mirrored each other. With the advent of
quantum mechanics, nuclear physics and an understanding of the mechanics at work
within stars, the idea of the instability of massive stars, at the end of their lifetimes, was
gaining ground. In 1939, R. Oppenheimer and Snyder [19] proposed using the external
metric, considered in isolation, to describe an object undergoing implosion. The starting
point is the time it takes for a witness mass, in free fall, to reach the Sshwarzschild
sphere. If the proper time is finite and very short, then by choosing a t coordinate in
spherical symmetry and under “static” conditions, this time becomes infinite.
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Fig. 29 : Free-fall time soars as soon as
the particle approaches the Schwarzschild sphere.
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This aspect is the basis of a proposed model for the implosion of a massive star. If all these
massive particles implode without the force of pressure being able to oppose them, and if
collapse, this implosion, although taking place in its own time in a duration measured in seconds,
seems to last an infinite time for an outside observer, then the outside metric may suffice to
describe this phenomenon. In 1939, through this study, Oppenheimer and Snyder [20] gave birth

to a new object, to which John Archibald Wheeler gave the name black hole.

This scenario no longer holds if we take into account a dr dt cross term in the metric. In 1924, A.
Eddington, followed in 1958 by D. Finkelstein [17], introduced such a term by means of a simple

change of variable affecting the time variable, :
R
(37) ctE=ctS+8aLn(a—1) 0==1

ts designating “Schwarzschild time”). The metric becomes, in Rwith R <o :

(38) ds’=[1-% |t 2= [ 1+ % |dR? — R? (467 + sin?6do? ) + 22%C dR dt
R) " F R R E
With the space coordinate p :
(39)
L ch L. ch
ds= PP 2ge o TP oy g2y 20€0 44 (14 L chp ) (d6* +sin*6dg? )

_1+anhp N 1+L  chp
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Eddington had imagined this change of coordinate only to transform the situation in R
=0 into a simple coordinate singularity problem. But in 2021, the mathematician P.
Koiran [21] showed that a dissymmetry between the free-fall and escape times in the
two slicks would then become apparent. If we opt for 6=—1 in the portion of space-

time associated with the ordinary world and for é =+ 1 I the second fold, we have:

- a brief, finite free-fall time and an infinite escape time in the first sheet
- A finite, brief escape time and an infinite free-fall time in the second sheet.

This gives the structure the character of a “one-way membrane”. This situation
invalidates the hypothesis of an infinite free-fall time in the first sheet, and thus
invalidates the black hole model, which relies on a “freeze-frame”.

Furthermore, taking up Weyl's work on the inversion of the time coordinate at the
passage of the gorge sphere, and relying on the theorem of mathematician JM. Souriau
[22], equation (14.67), the inversion of the time coordinate (T-symmetry) goes hand in
hand with the inversion of energy and mass. Energy being the source of the gravitational
field, it is then possible to describe this field in a “positive world”, using a mass M :

40) ds*=|1-29M Jeae 214 29M \4r> 2 (402 + sin*0de?) - 2IM qrat,
c’R c cR

And on the other fold, in the negative world:

(41) ds*= (1 ¥ Zgy)czdt; - (1 - 2(;111{\4de2 CR2(d6% +sin*0dg?) + T9M Rt
c c

A scenario is then sketched out, should the situation shown in figure 26 become
established. The solution would represent a kind of snapshot of a mass inversion and
expulsion process in a T-symmetric sheet.

P

Fig. 30 : Meridian of a one-way membrane.
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8 - Back to the Schwarzschild interior metric [8].

As it was only available in English translation in 1999, the aspects that follow are still
largely unknown to theorists. This metric is expressed in terms of an angle . .

Das Linienelement im Innern der Kugel nimmt, wenn
man statt x,, .2@,, &, (7) die Variabeln %, S, ¢ benutzt, die einfache

Gestalt an: ¥

ds* = (‘; i %"_COS%) At — 7 |dy? 4 sin® ,dS 4 sin® y, sin? Sd¢’|. (35)

- K0,

AuBBerhalb der Kugel bleibt die Form des Linienelements
dieselbe, wie beim Massenpunkt:

ds = {1— 2 Jar— L R (dS* + sin’SdtIf)I
R 1 —afR (36)
wobei: RP=1r3+p l

ist. Nur wird p nach (33) bestimmt, wihrend fiir den Massenpunkt
p=ua® war.

Fig.31 : Schwarzschild 1916 interior metric. [8]

Translation :

When one avails of the variables x, 9, ¢ instead of x1, xo, x3 (iz), the line element in the interior
of the sphere takes the simple form:

2
2 (M) 2 — 3 [y + sin?xd9? + sinysin0dé?]. (35)
Kpo

Outside the sphere the form of the line element remains the same as in “Mass point”:

ds* = (1 — a/R)dt? —

L R%(d9? + sin? 9d¢?)
l1-a/R (36)

where R® =13+ p.

Now p will be determined by (33), while for the mass point it was p = o®.

Fig. 31 bis : Schwarzschild 1916 interior metric
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Note in passing (red arrow) Schwarzschild's very discreet mention of a purely imaginary
time coordinate (ix), which historians of science would do well to comment on.

Next come the variations in pressure and speed of light within the mass:

4. Die Lichtgeschwindigkeit in unserer Kugel wird:

4
v = (44)

)
3 COS Yy — COS Y,

. .. l
sic witchst also vom Betrag ——
COS Y,

an der Oberfliiche bis zum Betrag

Ll

———— im Mittelpunkt. Die DruckgriBBe g, + p wichst nach (10)
3 €08 Y, — I

und (30) proportional der Lichtgesehwindigkeit.
Im Kugelmittelpunkt (¥, = o) werden Lichtgesehwindigkeit und
Druck unendlich. sobald cos 3, = 1,3 . die Fallgeschwindigkeit gleich

;/8/9 der (natiirlich gemessenen) Lichtgeschwindigheit geworden ist. Es

ist damit cine Grenze der Konzentration gegeben. {iber die hinaus eine
Kugel inkompressibler Flissigkeit nicht existieren kann.  Wollte man
unsere Gleichungen auf Werte cosy, < 1/3 anwenden, so erhiclte man
bereits auBerhalb des Kugelmittelpunktes Unstetigkeiten.

Fig. 32 : Evolution of the speed of light and pressure. [8]

Translation :
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4. La vitesse de la lumiére dans notre sphére est:

2
= 3 cos(x,) —cos(y)

de sorte qu’elle varie a partir de la valeur sur la surface 1 / cos(y a) jusqu'a la valeur au

(44)

centre 2 /(3 cos(x,) —1 - Lavariable de pression p,+p augmente selon (10) et (30)
proportionnellement a la
Au centre de la sphére (y = 0) ,la vitesse de la lumiére et la pression deviennent infinies

dées que cos(x,) = % , la vitesse de chute est devenue égale a \E de la vitesse de la

lumiere (mesurée naturellement).

il y a donc une limite de densité au-dela de laquelle une boule de fluide incompressible ne
. 2 - & . 5 1

peut exister. Si nous voulions appliquer nos équations aux valeurs cos(y,) < 3 des

discontinuités seraient obtenues en dehors du centre de la sphére.

Fig.32bis : Evolution of the speed of light and pressure.

Within the mass, the force of pressure opposes the force of gravity. This was taken up by
Oppenheimer and Volkoff [24], and Tolman [23] in their articles published in 1939. This
gave rise to the TOV (Tolman-Oppenheimer-Volkoff) equation. This equation also shows
that the pressure at the center of the star soars when the conditions for a new criticality,
which we will refer to as physical criticality, arise. The various facets of this physical
criticality situation are illustrated in this illustration taken from [25]. Physical criticality
occurs at:

8 A 8 3¢? ¢’
42 R =.]— R=.,—= =
(42) erohss =\ g \/9\/8nGp \/3nGp
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1.0 , ;
M = (0.0828 -

’
7
M = 0.636

I'ime
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toco atr=90

20 [— —

Pressure

Embedding
(case M = 0.838)

1.0

Fig.33 : Physical criticity [25] .

On the left is the pressure surge. Below and to the right is the meridian curve for which
physical criticality occurs when = arc cos (1/3) which brings this angle value to

around 70°, while geometric criticality is reached for x =mn/2. The curve at top right

represents the term ( 3cosy, —cosy )/ 2, such as for an observer at rest :
(43) ds:dt( 3cosy, —cosy )/2

Neutron stars have a density that can roughly be described as almost constant. In his
1916 article, K. Schwarzschild did not hesitate to attribute this rise in pressure to the
variation in the speed of light. He is thus the first to envisage the possibility of a
variation in this quantity. However, this is considered as an alternative to the inflation
model ([26], [27]). In this model, all constants vary jointly, ensuring generalized
conservation of all physics equations, as well as conservation of all forms of energy.
Assuming that this phenomenon occurs only in the radiative phase, we have the
following evolution curves:
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Fig. 34 : Joint normalized changes in the constants of physics
during the radiation dominated era [27].

There's a single observable: the homogeneity of the early universe, linked to the fact that
throughout the period preceding decoupling, the cosmological horizon decays as the
universe's spatial scaling factor a.

Classically, this surge in pressure is dismissed as unphysical, since the speed of sound,
defined as the (dp /dp)"* would then become greater than the speed of light (considered

invariant), breaking the principle of causality. In fact, at the center of neutron stars lies a
medium where the contribution of the “photon gas” becomes predominant, and where
pressure becomes :

2
C
(44) p:pr=p7

So, as Schwarzschild suggested, the rise in pressure goes hand in hand with the local
variation in the speed of light, allowing the pressure gradient to continue to
counterbalance the overwhelming force of gravity... . But what happens when physical
criticality is reached and exceeded?

9 - The plugstar alternative.

The gravastar model ([33]to [48]), an alternative to the Black Hole model, has aroused
great interest in the spécialist community. It eliminates both the cosmological horizon
and the central singularity. In consists of a thin layer of conventional matter enclosing a
portion of space filled with dark energy, thus preventing implosion. Based on more
conventional physical and geometrical considerations, extrapolated from classical
design, we present the plugstar model, as another alternative to black holes.



42

Imagine exceeding the physical criticality by a very small margin. The term in brackets
becomes negative. Let's go back to H. Weyl's reasoning: since the length ds (the proper
time to within a factor) cannot be reversed, it's the time coordinate that changes sign,
meaning that the masses located in this small region become negative. If we consider, as
in the Janus model ([30], [31], [32]), that the gravitational field produced by positive
masses repels negative counter-masses, interacting with them only by antigravitation,
then they will be expelled from the object. The result is a mechanism that ensures the
self-stability of objects such as neutron stars, with a very brutal reaction mechanism.
Let's take another look at the time factor and imagine overcoming physical criticality.

time factor
1. — —
external — ’/:/
metric L T st
0.75 T L
L. //;/5/,/;;/;?"’
ol ,/'—/'5;///'//
internal pr
metric /
05
//_ physical criticity
0.25|
geometrical criticity
0o 0.25 055 075 ‘/1,g5 i\;s 1,75 2 R
o~
R/R

Fig. 35 : Time factor evolution as physical criticality approaches.

The opening mode of this central singularity, where the masses are inverted, is
parabolic:
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Fig. 36 : Parabolic growth of the diameter of the central singularity.

Physical criticality occurs at:

8 A 8 3¢? ¢’
45 R =, /= R=./= —
(%) erohss =\ g \/9\/8nGp \/31tGp

All these calculations, concerning the internal metric, correspond to objects with SO(3)
symmetry, free from rotation. The values can therefore only be taken as indicative.
Neutron stars rotate at speeds of up to a thousand revolutions per second, with
peripheral velocities reaching a quarter of the speed of light. By opposing the force of
gravity, centrifugal force results in an increase in critical conditions, which is the subject
of ongoing research.

10 - Comparison with observational data.

The only direct images available are of hypermassive objects at the center of the M 87
and Milky Way galaxies.
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Fig. 37 : Images of objects presented as Giant Black Holes.

In 2019 and 2022, the Event Horizon Telescope system will present for the first time
reconstructed images of the two supermassive objects at the center of the M87 galaxy
and the Milky Way. What is immediately apparent is that the centers of these objects are
not perfectly black. A chromatic scale gives us access, if not to reliable radiation
temperature values, at least to the ratios between maximum and minimum values, in
both cases. Values close to three are then obtained. It's significant that many articles
presenting these results include the words “shadow of giant black hole” in their titles,
the argument being that, when they do exist, we can't see what else they might be. As for
the light emitted by the central portions, some specialists are quick to attribute it to the
gaseous mass in the foreground, corresponding to the accretion disk. But if this is the
correct explanation, why does this radiation not betray its presence outside the object?

A quick calculation shows that this darkening of the central part can be interpreted as a
gravitational redshift effect emanating from objects at the critical limit.

' 4mR’ ? '
46) Mo 1 M=""" R = |-¢ Mo 1,
A . 2GM 3 0 3nGp A | 8
_Rocz 9

If this agreement were considered to account for these two observations, it would mean
that these objects would be animated by a sufficiently weak rotational motion for this to
have little effect on raising the value of the physical critical mass. This raises the question of
their origin. The object at the center of galaxy M 87 emits two plasma jets in diametrically
opposed directions. It is therefore a quasar. The one at the center of our galaxy is not. Let's
think of it as a remnant quasar. In what follows, we are obliged to report on ongoing
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research, which is still in its early stages. But we had set out the possible scenario decades
before. In the Janus model, the cosmos is described using two coupled field equations. This

system is likely to generate joint fluctuations gw and §MV in the metrics of the two sectors,

resulting in spatio-temporal fluctuations in the way each species influences the other,
through its contribution to the gravitational field acting on it. Two possible scenarios can be
envisaged, which have already been explored through numerical simulations.

- Either the gravitational field that keeps galaxies together is weakened. In the most
extreme cases, these break up completely, producing what are known as irregular
galaxies.

- Either the field is strengthened, creating a centripetal density wave. Hoag galaxies
could represent this kind of situation.

Fig.38 : Hoag galaxy.

The density wave would then converge towards the galactic center. As in spiral structures,
the light contrast does not reflect the density contrast, but signals the birth of new stars
which, emitting in the ultraviolet, excite the interstellar gas. This emission also ionizes the
gas, creating conditions of high magnetic Reynolds number. The density wave thus doubles
as an ionization wave, trapping the galaxy's very weak pre-existing magnetic field. The
convergence of the density wave gathers the magnetic field lines in the same way as a
harvester gathers his ears of wheat. The wave can be compared to a tsunami, which, when it
hits the coast, generates considerable effects, but which, when it forms, is only a wave that
does not transport matter. As its propagation speed is greater than the residual speed of gas
packets, of the order of one km/s, density waves also have the structure of shock waves.
This is also the case for spiral density waves, trailings, where the wave front is located in the
concave part of the wave. Spiral waves reflect a dynamic friction effect, transferring part of
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the galaxy's angular momentum to its negative-mass surroundings. But, as shown in the
simulations, this effect remains almost imperceptible.

Momentum of the positive populstion
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Fig. 39 : Weak loss of angular momentum in galaxies,
due to momentum transfer by density waves [29].

Similarly, centripetal density waves are not very effective at transferring angular velocity
from the periphery to the center, as shown by the spiral inhomogeneities visible in Hoag
galaxies (see figure 35). When the density wave reaches the center of the galaxy, it results in
a sudden rise in density, with fusion reactions starting in a very small volume. The magnetic
field, strengthened by the conservation of flux, channels the emitted plasma into two
diametrically opposed jets. This is the very essence of the quasar phenomenon. If the
concentration of matter is such that physical criticality occurs, the plugstar phenomenon rids
the galaxy of excess matter, accompanied by the emission of a powerful gravitational wave.
When the quasar phenomenon ceases, a considerable mass remains in its place, whose
structure has nothing in common with that of a neutron star. The pressure at its center
remains finite, but very high, and the pressure gradient is sufficient to prevent the object
collapsing in on itself. Resulting from a quasi-rotation-free object, for the reasons mentioned
above, its geometry is then close to the solutions presented by K.Schwarzschild in 1916, i.e.
they are identified with subcritical objects generating a gravitational redshift effect with
A/A=3.

This is confirmed by the first observational data mentioned above. It is indeed statistically
unlikely, when we opt for the presence of an accretion disk located in the foreground, that
its temperature is in both cases such that A'/A=3. We conjecture that these joint
fluctuations in metrics were much more intense in the early universe, but that they
continue, giving rise at regular intervals to the revival of the quasar phenomenon. This would
be the case for the hypermassive, but not hyperdense, object at the center of the Milky
Way. We also conjecture, when images of future hypermassive objects become available,
that this ratio of maximum and minimum wavelengths will still be close to 3, in other words
that they will be subcritical objects with little rotation.
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Since the first detections of gravitational waves were made by the LIGO and VIRGO systems,
these very faint signals have been decoded by comparing them with those that would result
from the merging of neutron stars, then increasingly massive black holes, whose formation
scenario the scientific community is struggling to describe. The results show a gap between
these two types of event:

Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars

°®

Updated 2020-09-02
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Fig. 40 : Fusion scenarios, after LIGO (2020).

The theory of gravitational waves in the bimetric Janus system as a dissipative phenomenon
remains to be constructed, and we are working on it. It will undoubtedly produce a different
scenario, in which the most intense gravitational waves are attributed to mass inversions
rather than to massive black hole mergers..

11 — Conclusion.

This study takes stock of the elements that gave rise to the black hole model, essentially the
confusion of the intermediate quantity R in Schwarzschild's original article of January 1916
with a radial coordinate r, which can take on values lower than the Schwarzschild length o .
Added to this confusion is the loss of reference points due to the inversion of the signs of the
metric's signature and of the common thread represented by the requirement for a real
length s, and therefore a real time. Even when it comes to considering the geometry
associated with a solution to the Einstein equation with zero second member, considered in
isolation, the error has given rise to interpretations betraying a misleading interpretation of
the topology of an object, resolutely non-contractile, by envisaging “that inside r may
designate the time coordinate and that t may become a space coordinate”.
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Finally, the failure to take into account the February 1916 article, and its implications,
betraying the impasse of an inescapable event, signalling a physical criticality occurring
before the classic geometric criticality could be reached, distorted the construction of any
scenario referring either to a subcritical neutron star destabilized by matter input, or to the
criticality entry of a massive star at the moment of its collapse. Many articles are currently
devoted to so-called gravstars ([33] to[48]) as an alternative to the black hole model. The
approach consists in adding an ad hoc negative source term to the field equation, in a
spherical portion of space, which would reflect the presence of a local and repulsive
concentration of dark energy. . But ther’s no explanation of what this is, or how it came out.
It is then surrounded by a thin shell of ordinary matter. This has the effect od obliterating
the horizon and the central singularity, resulting in an object whose dark central part is no
perfectly dark. Revisiting this question gives rise to the alternative model of self-stabilizing
plugstars, where any excess matter is eliminated by mass inversion. After justifying the
hypothesis of a low incidence of rotation for hypermassive objects located at the center of
galaxies, and considering them as subcritical objects, we show that the ratio of maximum
and minimum wavelengths, reflecting a gravitational redshift effect A'/A , close to three,
agrees with available observational data.

Appendix: Comparative diagrams for constructing the zero second member
solution of Einstein equation, according to Schwarzschild and Hilbert.

Schwarzschild Hilbert
Managing geometric assumptions: Sj' ds =0 Managing the _geometrical assumpton and shft
ds’ = Fdt® — G (dx’ + dy’ +dz”) — H(xdx+ydy-+zdz) to polar coordinates;
w, =rcos¥,w, =rsindcosd,w, =rsindsing,w, =1

Shift to polar coordinates :

A . . g, =0 +eh (37)
x=rsindcos @, y=rsin¥sind,z=rcos ¥ il = b
. Bilinear form:
F,G,H fonctions of r=yx"+y’+2’ Fdr + G (d9” + sin’ 9d¢”) + Hdl’ “2)
ds’ =Fdt’ —(G+Hr?) - Gr*(d®* +sin’8do?)  (6) F,G,H function of 1 — r+=/G()

3 SRS T 5 5
r Mydr 4+ 1+7(d0° +sin’ 8do*)+ Wasdl?  (43)

X = , X,=—cos(® , x,=¢ , x,=t @)

1 3 4
 tag =0
, : , dxzz . , M:r._a W:—r‘
ds? =f,dx,’ —f dx - f,—2> - f,dx 2(1-x,)  (9)
= I 2 i 2Ny, FE— O
2 G(dr+dd,d0,dl) = ——— dr +*+r+3(d0° +sin* Bdg?) + ——dF
ds® =f,dr’ —f r*dr’ — £, d®° — f, in> 9 d¢? i g *

3 pod) s ) . —
f=l-—2 _ f= Lt R =@+0) | G(drdd,do,dt) = ——— dr>+r +X(d0 +sin> D do?) — ——dr?
4 (r, +a3)113 2 1_(r3 +a3)1,3 2 3 T+—Q T+
ds? @+’ -a ., r , r*=(r'+o’)”

§*= c'dt® -
(£ +0c)” (r3+a3)[(r3 _Hx;)m_a:l SIds2=0
Fig.41 : Compared Schwarzschild and Hilbert schemes.
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