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OPERATIONAL LIMITS

•  Magnetic confinement devices

don't operate at arbitrary plasma

parameters

•  There are well established,

distinct limits on plasma

pressure, current, and density

•  Understanding these limits and

their implications has always

been an active area of research



DENSITY LIMITS - AN IMPORTANT ISSUE FOR MAGNETIC FUSION

•  2
DTR n vσ∝

•  Plasma pressure limited by MHD

stability

•  At fixed pressure, there is an

optimum temperature ➙  optimum

density

•  No guarantee that this density

is achievable in any given device

•  Critical issue for conventional tokamak reactor



DENSITY LIMITS - THE PHYSICS PROBLEM

•  What physics can limit the density?

−−−− Ideal MHD only cares about pressure (and current) not density

✸  Temperature profile influences current profile

✸  (Resistive MHD could be a factor at low temperatures)

−−−− Radiation cooling  ( )2
RAD e Z eP n f R T∝

−−−− Neutral shielding: fueling limits

−−−− Density or collisionality dependent transport ➙  edge cooling

•  No widely accepted first principles theory available

•  Not even agreement on critical physics



OUTLINE OF TALK

•  Experimental observations including

−−−− Tokamak

−−−− Stellarators

−−−− Reversed Field Pinches (RFP)

−−−− Spheromaks and FRCs

•  Physics basis for density limit

−−−− Neutrals

−−−− Radiation models

−−−− Role of transport physics

•  Summary and Discussion



IN TOKAMAKS, LIMIT ULTIMATELY MANIFESTS ITSELF AS DISRUPTION

•  General agreement on final scenario

•  Current profile shrinkage  ➙  MHD

instability ➙  disruption

•  Critical questions involve the

evolution to the point where the

current profile collapses

•  What is the essential physics of the

bifurcation or catastrophe

•  "Hard" terminations also seen at

times in reversed field pinches



"SOFT LIMITS" SEEN IN OTHER DEVICES

•  In Stellarator, clear evidence of thermal collapse -

plasma can recover if density is lowered

•  No coupling from Te profile through resistivity and

current profile to MHD stability

•  Physics is not so clearly confined to edge

•  RFPs have quenches as well as fast terminations

•  Spheromak and FRC don't have density limit data

operation at "optimized" density.

•  Doesn't preclude (or require) a common cause
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DENSITY LIMIT FIRST CHARAC D BY EMPIRICAL SCALING

•  First motivated by

observation that impure

plasmas disrupted at

lower densities

•  Murakami limit (1976)

0/T OhmicB R j P∝ ≈

•  Hugill plot ~ 1978

•  Leading dependence is

with plasma current density

•  
2
P

LIM
B I

n
qR a

∝ ≈      (Note absence o
TERIZE
f significant power scaling)

(Axon 1980)



SCALING REFINED BY INCLUSION OF DATA FROM SHAPED TOKAMAKS

•  Greenwald limit:      
2

P
G

I
n

aπ
=

(with n: 1020/m3, IP: MA, a: m)

•  Identical to Hugill for circular

plasmas

•  Differs significantly for shaped

plasmas



RECENT DATA WITH VERY DIFFERENT PLASMA SHAPE IS ROUGHLY FIT BY

EMPIRICAL LA

•  Original data had wide

range in BT, IP, PIN

•  Aspect ratio only 3-5

•  Elongation only up to

1.5

•  Spherical tokamaks

aspect ratio ~ 1.5

elongation ~ 2
W

(Kaye 2001)



IMPURITIES ARE IMPORTANT …. BUT ONLY UP TO A POINT

•  Below around ZEFF ~ 2.5, drops out    ( EZ
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DENSITY LIMIT IN TOKAMAKS DOES NOT DEPEND STRONGLY ON INPUT

POWER
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•  Power dependence in low

confinement mode (L-mode)

varies from P0 - P0.25

•  Role of neutral beam fueling

in power dependence is

unc

(Petrie 1993)
ertain



AT HIGH DENSITIES, HIGH CONFINEMENT (H-MODE) DISCHARGES

DEGRADE THEN REVE -MODE
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STRONG SHAPING DOES ALLOW FOR BETTER CONFINEMENT IN H-MODE

AS THE DENSITY IS RAISED TOWARD THE LIMIT.

•  Increase in confinement at high triangularity at o improved pedestal

stability
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DETERIORATION IN H-MODE CONF T IS CORRELATED WITH DROP

IN EDGE T ATUR

•  CORE EDGEH and T T∇ ∝

•  Constant edge pressure implies τE

independent of density
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SO…THE TRICK FOR EXCEEDING THE EMPIRICAL LIMIT - PEAKED

DENSITY PROFILES

•  All indications are that limit is due to edge

•  Particles in core apparently don’t drive density limit
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GOOD CONFINEMENT WITH DENSITY IN S OF nG IS CORRELATED TO

PEAKED DENSIT ILE

•  Widely seen  (Alcator C, TFTR, DIII-D,

JET, ASDEX, ASDEX-Upgrade,

TEXTOR…)

•  Also seen in stellarators (Heliotron E, LHD

•  Edge density apparently never exceeds

empirical limit

•  Combination of density peaking and stron

plasma shaping open window for high den
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DENSITY LIMITS IN REVERSED FIELD PINCH

• erating space

terized historically

•

•

•

2 102 0

 with fast termination
without fast termination

(Bartiromo 2000)
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RADIATED POWER PROBABLY NOT CRUCIAL FOR RFP LIMIT

•   both soft (quench-like)

•  

•  

0.5

(Marrelli 1998)
RFP has
and hard (disruption-like) density

limits

Radiated power increases at

high density (low I/N), but

Radiated fraction is never

very high
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STELLA S REACH SIMILAR DENSITIES BUT SHOW DIFFERENT

DEPENDENCES

•  Different 

•  Shaping:

•  Scaling w

•  For mach

stellarato
RATOR
scaling with power, size

 B/qR vs I/a2 scaling

ith ι   = 1/q

ines with similar size and fields,

r will reach about twice the density

of a tokamak
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SCALING FOR STELLARATOR DE IMIT

•  Variation in results

•  Consensus: ( )0.5/CRITn BP V∝  (Sudo

1990, Giannone 2000)

•  But note evidence for stronger B and

weaker size scaling

•  Preliminary results from LHD (Large

Helical device) support scaling

•  Results generally consistent with

radiation/power balance models

0.4
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  "DENSITY LIMIT" IN SPHEROMAK AND FIELD REVERSED

CONFIGURATION (FRC)

•  Spheromak and FRC don't

have density limit data

•  "Optimized" discharges

obtained by scanning fill

pressure

•  Turns out to be quite close to

empirical scaling.

•  Significant?
(Jarboe 1985)



 PHYSICS MODELS FOR THE DENSITY LIMIT

•  NEUTRALS - FUELING AND POWER BALANCE

•  RADIATION MODELS - POWER BALANCE

•  ROLE OF TRANSPORT PHYSICS



GLOBAL SCALING BY ITSELF IS AN INSUFFICIENT FOUNDATION FOR

PREDICTING THE PERFORMANCE OF FUTURE MACHINES

•  Scaling does an OK job, may need small corrections for aspect ratio, power, etc,

but

•  Covariance in data, may hide dependences  (IP and PIN for example)

•  Misses important local physics - density profiles

•  Need verified, first principles model

Big questions

•  Where does the catastrophe come from?

•  How do we compute the density limit?



ROLE OF NEUTRALS  DENSITY LIMIT

•  Self shielding - limits gas

fueling

•  Energy loss via ionization and

charge exchange

•  Sets edge gradient length

cause unstable pressure

profile

•  Despite this - nG is not

describing a fueling limit -

obviated by core fueling
Relatively small 

large reduction i

closed flux surfa

        C es ! Open field lines
  " 
 IN THE

losed lin
increase in density leads to

n ionization inside last

ce

(LaBombard)



RADIATION POWER BALANCE - EDGE OR SCRAPE-OFF LAYER (SOL)

h Motivation

−−−− Very dirty plasmas don't reach high density

−−−− ( )2
RAD e Z eP n f R T∝  - edge cooling

h Choose physical phenomenon to model

−−−− Global thermal collapse

−−−− Radiation condensation

−−−− Poloidal detachment

−−−− Divertor detachment

−−−− Radiation dominated transport ➙  MHD unstable

pressure profiles

h Solve coupled equations for energy, momentum, particle balance

(+ Ad hoc assumption to relate "edge" density to core density)



RADIATIVE CONDENSATION  - MARFE THRESHOLD

•  MARFE = MARmar wolFE

•  At low temperatures  
( )

0
dR T

dT
<

•  With insufficient conducted

power, radiative collapse occurs

•  At constant pressure T↓   n↑

further increases ( )2
e en R T

•  In some machines, MARFEs

appear just before the density limi

•  So… compute density limit by calc

•  However - MARFEs observed fr
t

ulating MARFE threshold

om 0.4 -1.0 nG

(Boswell)



RADIAL STABILITY - POLOIDAL DETACHMENT

•  Assumes limit associated with PRAD = PIN  (Seen in some machines)

•  Plasma is no longer coupled thermally to wall

•  Compute radial stability from perturbation analysis for radiating layer at r = ap

•  Stability criteria      
3

2
P

P

a dn

n da
− >     (Assumes density profile fixed)

•  Can get result for scaling law assuming ohmic heating and 2
E naτ ∝

•  Transport assumption probably not correct

•  With other assumptions - don’t get result much like experiments

•  (Not universal -  PRAD/PIN  = 0.3 - 1.0 at limit)



DIVERTOR DETACHMENT - SCRAPEOFF LAYER MODEL

•  As density ↑ , Te↓  allows Te

gradient along open field lines

"divertor marfe"

•  At sufficiently low temperatures,

neutral collisions dominate

momentum transport

•  Leads to drop in plasma

pressure at  divertor plate

•  Radiation zone moves up to x-

point (x-point marfe)

•  Theory uses detachment threshold as crit

•  In experiment, detachment occurs from
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SCRAPE-OFF LAYER/DETACHMENT THEORY

•  Analytic theory - divertor two point model - forced in r law form

•  Finds critical separatrix density   
( )

5/16

11/16

x

SEP
q B

n
qR

⊥
−∝

•  Requires assumption  - Bohm

transport

•  Reasonable agreement with

JET, ASDEX-Upgrade data

•  Numerical simulations find limit

diverges for ZEFF ➙  1 0

0.5
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n ex
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to powe
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IS THERE MORE PHYSICS INVOLVED?

h Problem with radiation models

−−−− Power and impurity dependence too strong   ➙  ( )/ 1LIM IN EFFn P Z∝ −

−−−− Threshold mechanisms show up well below density limit

−−−− Transport assumptions:   theories are incomplete at best

h Evidence for increased transport as cause of edge cooling

−−−− Transient transport experiments (Greenwald 1988, Marinak 1993)

−−−− Fluctuation measurements (Brower 1991)

−−−− Detailed probe measurements in edge (LaBombard 2001)

•  General observations of edge turbulence at high densities

−−−− Universal result?



TURBULENT TRANSPORT IN EDGE INCREASES WITH COLLISIONALITY

h Two regimes observed in scrape-off

layer (SOL)

−−−− Near-SOL: steep gradients

−−−− Far-SOL:  flat profiles

h Particle flux and transport

−−−− Near-SOL: cross-field transport low

−−−− Far-SOL:  cross-field transport high

h Fluctuation changes character

−−−− Near-SOL:  low amplitude, short

correlation times and lengths

−−−− Far-SOL:  large amplitude, bursty, long 
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WE CAN VISUALIZE THE FAR-SOL FLUCTUATIONS

•  Images taken with fast CCD

camera

•  4 µsec framing time

•  D2 gas puff: image Hα

•  Large "blobs" dominate far SOL

•  Seen to move poloidally and

radially

•  Correlation length, correlation

time, propagation velocity

consistent with probe measurements
(Zweben, Terry 2001)

1 cm



TURBULENCE DRIVEN CONVECTION CAN COMPETE WITH PARALLEL

TRANSPORT

•  In far SOL, cross-field transport

overwhelms parallel transport

•  As density is increased, region of large

fluctuations and transport move inward

toward separatrix

•  Parallel transport ~Te
7/2 is stable with

respect to temperature perturbations

•  Collisionality driven cross-field

transport is unstable
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AS THE DENSITY LIMIT IS APPROACHED, HIGH TRANSPORT REGIME

CROSSES SEPARATRIX AND MOVES INT  PLASMA

•  Has the potential to explain range

of density limit phenomena

•  Once perpendicular transport

dominates, stabilizing influence is

lost

•  Threshold condition not known

•  Requires that complex transport

physics have the "correct" form

•  Where does IP (or BP) dependence

come from?
O MAIN
(LaBombard 2001)



NEED IMPROVED MODELS FOR EDGE TURBULENCE

•  Unfortunately, theory and models for edge turbu  not understood well

enough yet

•  3D gyro-fluid simulations have found regime of e  high transport

•  2 /Rq d drα β= −

•  0 0/D s s nc t L Lα ρ=

2

n n

T

nL L

λ 
∝ →   

•  Region of high transport

consistent with high density, low

temperature

•  No quantitative predictions yet
lence are

xtremely
(Rogers, Drake 1998)



EXPERIMENTAL SUPPORT FOR TURBULENCE MODEL
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DISCUSSION -  MECHANISMS

•  Various models proposed - progress has been made but none are entirely

satisfactory

•  Physics strongly coupled - cause and effects hard to untangle

•  May need combination of turbulent transport and atomic mechanisms

•  Lead to investigation of very different physics

•  Need to use self-consistent profiles, transport, power balance etc. for all models



SUMMARY

•  Substantial  progress has been made in understanding this interesting and

important problem

•  It is remarkable that simple empirical laws can capture such complex

physics

•  The similarity of the limit across a wide range of confinement devices is

remarkable as well

•  By peaking the density profile, it is possible to obviate what is essentially

and edge limit.

•  Still, it remains a significant challenge to understand the underlying

physics
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