
On a generalized scalar product: reality of the
energies and the brachistochrone problem

N. Debergh 1 and J.-P. Petit 2

1 Department of Pedagogy, Haute Ecole Charlemagne, 1, rue Grégoire Bodart, 4500 Huy,
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Abstract

We highlight a generalized scalar product, including both the stan-
dard inner product and the PT -symmetric quantum mechanical one.
Our only working hypothesis is to deal with real energies. We then
consider the brachistochrone problem by computing the minimal tran-
sition time between two normalized and orthogonal states with respect
to this generalized scalar product.
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1 Introduction

When one reads a book dealing with quantum mechanics, the first pages
usually point out that this physics is based on the introduction of a positive
definite Hermitian sesquilinear form (or scalar product) ensuring not only a
positive norm but also real energies. If one introduces the matrix calculus,
this results in a Hermitian Hamiltonian. And, in fact, this is sufficient to
ensure that the energies are real.
In their 1998 paper [1], Bender and Boettcher have shown that there is an
array of Hamiltonians which are not self-adjoint (with respect to the usual
scalar product of quantum mechanics) and thus not realized through Hermi-
tian matrices but which are nevertheless associated to real energies.
The reason they proposed this paradigm shift is actually twofold. Firstly,
if quantum mechanics is based on a number of postulates (conservation of
probabilities etc), only one of them has its origin in a mathematical con-
straint: it is the axiom of the self-adjoint Hamiltonian. Secondly, as already
mentioned, this axiom is a sufficient, but not necessary, condition to ensure
the real character of energies.

1

Page 1 of 14 AUTHOR SUBMITTED MANUSCRIPT - draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



These non-Hermitian Hamiltonians having a real spectrum belong to a class
called PT -symmetric Hamiltonians. In this denomination, P refers to spatial
reflexion x → −x while the time reversal operator T is such that t → −t.
This last operator is traditionally chosen as the complex conjugation K. In
this case, and consequently in Bender’s version (for a review, see [2]), it is
anti-unitary.
Bender showed that the PT -symmetric Hamiltonians are in fact CPT -symmetric
ones in the sense that they are self-adjoint according to a new inner-product
defined by (for more details, see [2])

⟨ψ1|ψ2⟩ ≡ ψCPT
1 ψ2 (1)

where C is a linear operator such that

C2 = I, , [C,PT ] = [C,H] = 0 (2)

The first relation in (2) implies that the eigenvalues of the C operator are
simply ±1. Consequently, this operator can be seen as a kind of charge
conjugation.
Recently, attention has been paid [3] to the fact that T could be a unitary
operator instead of being anti-unitary without losing coherence in the theory.
The purpose of this paper is in particular to put in evidence the implications
of such a (different) choice on inner products and energies.

In Section 2, we introduce a generalized sesquilinear form. However, we
restrict the discussion to the case of Hamiltonians having two energy levels
and thus to a two-dimensional subspace of the full Hilbert space. The rea-
son is twofold: to be able to compare easily the different approaches and
to prepare the ground for the study of the brachistochrone problem. It has
indeed been shown in [4] that one needs only to work in the two-dimensional
subspace spanned by the initial state |ψI⟩ and the final state |ψF ⟩ to have
the complete information on the minimal time transition between these two
states.
In Section 3, we highlight the eigenvalues and eigenvectors of a complex
Hamiltonian and the conditions to ensure that the energies are real. Impos-
ing the eigenstates to be orthonormal will definitely fix the scalar product.
We then specify three particular cases which allow us to find the standard
scalar product (section 3.1), the one of CPT -symmetric quantum mechanics
(section 3.2) and, finally, a possibility associated to a choice of unitary T
(section 3.3).
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We consider the brachistochrone problem in Section 4 by particularizing
ourselves to the three types of quantum mechanics mentioned above (Sections
4.1, 4.2 and 4.3, respectively).
We finally conclude in Section 5.

2 A generalized scalar product

When dealing with two-dimensional spaces, the standard scalar product reads

⟨ψ1|ψ2⟩ = a∗1a2 + b∗1b2 ; |ψ1⟩ =
(
a1
a2

)
; |ψ2⟩ =

(
b1
b2

)
(3)

where the notation ∗ stands for a complex conjugation. Obviously, this leads
to a positive norm.
We can generalize this inner product through

⟨ψ1|ψ2⟩ = C1 a
∗
1a2 + C2 b

∗
1a2 + C3 a

∗
1b2 + C4 b

∗
1b2 (4)

where C1, C2, C3, C4 are coefficients to be determined in the following.
We only impose on the norm to be real, which entails

C∗
1 = C1, C

∗
4 = C4, C

∗
3 = C2 (5)

This constraint ensures that

⟨ψ1|ψ2⟩ = ⟨ψ2|ψ1⟩∗ (6)

as well as the fact that two states differing by a phase are characterized by
the same norm.
The adjoint X† of an operator X is defined as usual by

⟨Xψ1|ψ2⟩ = ⟨ψ1|X†ψ2⟩ (7)

If X is realized through

X =

(
A B
C D

)
(8)

(A,B,C,D being complex numbers), then X† is given by

X† =
1

C1C4 − C2C3

(
D1 D2

D3 D4

)
(9)
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with
D1 = C1C4 A

∗ − C1C3 B
∗ + C2C4 C

∗ − C2C3 D
∗

D2 = C3C4 (A
∗ −D∗)− C2

3 B
∗ + C2

4 C
∗

D3 = −C1C2 (A
∗ −D∗) + C2

1 B
∗ − C2

2 C
∗

D4 = −C2C3 A
∗ + C1C3 B

∗ − C2C4 C
∗ + C1C4 D

∗

3 Eigenvalues and eigenvectors of the Hamil-

tonian

We consider the most general Hamiltonian expressed as

H =

(
r eiθ s eiϕ

v eiβ u eiλ

)
(10)

Here, r, s, v, u belong to R+ while θ, ϕ, β, λ are real numbers.
The corresponding eigenvalues are

E± =
reiθ + ueiλ ±

√
(reiθ − ueiλ)2 + 4svei(β+ϕ)

2
≡ 1

2
(reiθ + ueiλ ± w) (11)

Despite the fact that the Hamiltonian is complex (and is Hermitian iff θ and
λ are equal to 0 or π, v = s and β = −ϕ) these energies can be real if we
impose

r sin θ = −u sinλ (12a)

r2 sin 2θ + u2 sin 2λ+ 2sv sin(β + ϕ) = 0 (12b)

w2 = (r cos θ − u cosλ)2 − 4r2 sin2 θ + 4sv cos(β + ϕ) ≥ 0 (12c)

The eigenstates are given by

|ϵ+⟩ = y+

(
e−iβ

2v
(reiθ − ueiλ + w)

1

)
, |ϵ−⟩ = y−

(
e−iβ

2v
(reiθ − ueiλ − w)

1

)
(13)

The coefficients y± have to be fixed so that the relations

⟨ϵ±|ϵ±⟩ = 1, ⟨ϵ±|ϵ∓⟩ = 0 (14)
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are satisfied. We obtain

|y±|2 =
2v
√
sv cos β cosϕ− r2 sin2 θ

w2 cos β ± w(cos β(r cos θ − u cosλ) + 2r sin θ sin β)
(15)

The requests (14) also have consequences on the scalar product which is now
determined by

C3 = C2e
−2iβ − 2iC1e

−iβ r

v
sin θ (16a)

C4 = C1
s

v
e−i(β+ϕ) − C2

1

v
e−iβ(r cos θ − u cosλ) (16b)

There are still two parameters to fix. One can choose to do this by requiring
that the scalar product be a CPT -symmetry and that C2 = I (following the
approach developed by Bender [2]). As P is realized [2] through the Pauli
matrix σ1 ,we must have

C =

(
C2 C1

C4 C3

)
(17)

and its square gives the identity back if

C3 = −C2 ; C1C4 + C2
2 = 1 (18)

The first of these two conditions gives

C2 = iC1
r sin θ

v cos β
(19)

while the second of these two conditions leads to (taking account of Eq.
(12b))

C1 =
v cos β√

sv cos β cosϕ− r2 sin2 θ
(20)

The generalized scalar product thus finally reads

⟨ψ1|ψ2⟩ =
(v cos β a∗1a2 + ir sin θ(b∗1a2 − a∗1b2) + s cosϕ b∗1b2)√

sv cos β cosϕ− r2 sin2 θ
(21)

Let’s now look at three specific cases.
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3.1 The standard quantum mechanics

This case corresponds to

θ = λ = 0, π, v = s, β = −ϕ (22)

The constraints (12) are automatically satisfied and

w2 = (r − u)2 + 4s2 (23)

We recover in (21) the usual inner product (3).

3.2 The PT -symmetric quantum mechanics

As already mentioned, Bender [2] chose

P =

(
0 1
1 0

)
;T = K (24)

(where K refers to the complex conjugation). Obviously, we have

P 2 = T 2 = I (25)

and the PT -symmetric quantum mechanics is defined by requiring

PT H TP = H (26)

The most general Hamiltonian satisfying this constraint is given by

H =

(
reiθ seiϕ

se−iϕ re−iθ

)
, r, s ∈ R+, θ, ϕ ∈ R (27)

Notice that the Bender Hamiltonian corresponds to this one with ϕ = 0.
The operator (27) is found in the general formalism with

u = r, λ = −θ, v = s, β = −ϕ (28)

The constraints (12) of reality of the energies come down to

s2 − r2 sin2 θ ≥ 0 (29)

This request is fulfilled if

6
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1. sin θ ∈ [− s
r
, s
r
] if r ≥ s

2. r ≤ s

We also get
w2 = 4(s2 − r2 sin2 θ) (30)

and the energies are given by

E± = r cos θ ±
√
s2 − r2 sin2 θ (31)

The inner product (21) reduces to

⟨ψ1|ψ2⟩ =
s cosϕ(a∗1a2 + b∗1b2) + ir sin θ(b∗1a2 − a∗1b2)√

s2 cos2 ϕ− r2 sin2 θ
(32)

3.3 The Tu-symmetric quantum mechanics

Recently, a new version of quantum mechanics has been proposed [3]. It
is based on a different choice in what concerns the time reversal operator.
Indeed, we know since Wigner’s work [5] that a symmetry operator is either
unitary or anti-unitary. By opposition to the continuous symmetry operators
which have to be unitary, the nature of the discrete symmetry operators is
left to the choice of the physicists. In the context of non relativistic quantum
mechanics, the time reversal operator T is (almost) unanimously identified
with the complex conjugation K. This is the choice performed by Bender,
for instance.
Let us thus turn ourselves to the other possibility, knowing that it is compat-
ible with the conservation of the quantum mechanics laws [3]. If T is unitary,
it can be realized with a matrix namely [3]

Tu = σ2 =

(
0 −i
i 0

)
(33)

It has then to anticommute with H, which gives rise to

H =

(
reiθ seiϕ

se−iϕ −reiθ
)

; r, s ∈ R+, θ, ϕ ∈ R (34)

This Hamiltonian is not Hermitian (unless if θ = ϕ = 0) and, under the
Bender PT -symmetry, it is transformed like

PT H T−1P−1 =

(
−re−iθ se−iϕ

se−iϕ re−iθ

)
(35)
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It is thus not invariant unless θ = π
2
, ϕ = 0.

It corresponds to the general case if we fix the parameters as follows

u = −r, λ = θ, v = s, β = ϕ (36)

The reality of energies can be summarized by

r2 sin 2θ + s2 sin 2ϕ = 0 (37a)

w2 = 4(r2 cos 2θ + s2 cos 2ϕ) ≥ 0 (37b)

We have therefore three possible cases to ensure the reality of these energies:

1. cos 2θ ≥ 0, cos 2ϕ ≥ 0

2. cos 2θ ≥ 0, cos 2ϕ ≤ 0, r ≥ s

3. cos 2θ ≤ 0, cos 2ϕ ≥ 0, r ≤ s

As an example, we could take

r =
√
13, s =

√
18.25, θ =

5π

16
, ϕ = −4π

35
(38)

giving rise to
w = 5.9 (39)

We are indeed facing a new version of quantum mechanics: the energies are
real while this approach satisfies neither the constraints of standard quantum
mechanics nor those of the Bender version. This is what we will call the Tu-
symmetry quantum mechanics in the following.
The energies are in general

E± = ±
√
r2 cos 2θ + s2 cos 2ϕ (40)

They thus have opposite signs, a common point with those pointed out by
Dirac in his equation of relativistic quantum mechanics.
Let us conclude this Section by mentioning that the scalar product underlying
the Tu-symmetry quantum mechanics is still the one given in (32).
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4 The brachistochrone problem

The brachistochrone problem (from the Greek ’brakhisto’ meaning ’shortest’)
is the problem of finding the minimum time (tmin = τ) for which it is possible
to go from an initial state |ψI⟩ to a final state |ψF ⟩ through

|ψF ⟩ = e−
i
h̄
tH |ψI⟩ (41)

with Emax −Emin = w fixed. Here, we consider only two states of energy, so
that

Emax = E+;Emin = E− (42)

and

w =
√

(reiθ − ueiλ)2 + 4sv ei(β+ϕ) (43)

This problem has been achieved in [6] in the standard context

w =
√
(r − u)2 + 4s2

by using the variational calculus.
An alternative approach has been considered in [4]. It is based on the
Anandan-Aharonov relation [7] saying that the speed of a unitary evolution
is proportional to the energy uncertainty:

2

h̄
∆H (44)

This led to

τ =
h̄π

w
(45)

if the two states |ψI⟩ and |ψF ⟩ are orthogonal (and normalized).
Let’s see what it becomes in the context of the generalized scalar product.

First, we note that if |ψI⟩ and |ψF ⟩ are two orthogonal and normalized states
according to the inner product (21), any state |ψ⟩ can be expressed as

|ψ⟩ = c1|ψI⟩+ (c2 + ic3)|ψF ⟩, c1, c2, c3 ∈ R (46)

This is due to the fact that two states differing by a phase are characterized
by the same norm allowing to take the coefficient in front |ψI⟩ of real instead
of complex.

9
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Moreover, taking account of (21) and asking for |ψ⟩ to be normalized with
respect to this inner product, we are led to the following constraint

c21 + c22 + c23 = 1 (47)

This relation is satisfied with

c1 = cos
ρ

2
, c2 = − sin

ρ

2
sinΦ, c3 = sin

ρ

2
cosΦ (48)

where ρ and Φ are the well-known angles characterizing the Bloch sphere.
This means that, in the same way as in the case of standard quantum me-
chanics [4], two orthogonal states are located at the north and south poles
of this sphere.
We thus choose the (normalized) initial state |ψI⟩ as

|ψI⟩ =
1

v cos β

( √
sv cos β cosϕ− r2 sin2 θ

0

)
(49)

and calculate the standard deviation of (10) in the state (49). We obtain

(∆H)2 =
w2

4
− (

1

2
(r cos θ − u cosλ− 2ir sin θ) + ir

sin θ

cos β
e−iβ)2 (50)

with w given in (43).
Let us now focus on the three specific cases studied in Section 3.

4.1 The standard quantum mechanics

If we apply (22) to (50), we get

(∆H)2 =
w2

4
− 1

4
(r − u)2 (51)

The minimal time is recovered for a maximal standard deviation. We thus
have to take

r = u (52)

in which case we find the time (45). Note that the constraint (52) leads to
extremely simple eigenstates:

|ϵ±⟩ =
1√
2

(
±eiϕ
1

)
(53)

while w = 2s.
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4.2 The PT -symmetric quantum mechanics

If we now implement (28) in (50), we obtain

(∆H)2 =
w2

4
− r2 sin2 θ

sin2 ϕ

cos2 ϕ
(54)

To ask for a maximal (∆H)2 is therefore either to cancel θ (but then we fall
back on the standard quantum mechanics, an option we avoid here), or to
cancel ϕ (this is what was chosen by Bender [2]). Again, ϕ = 0 is the case
with the simplification of the eigenvectors:

|ϵ±⟩ =
1√

2 cosα

(
±e±iα

1

)
(55)

if

sinα ≡ r

s cosϕ
sin θ, cosα ≡ 1

s cosϕ

√
s2 cos2 ϕ− r2 sin2 θ (56)

The difference between E+ and E− simplifies to

w = 2
√
s2 − r2 sin2 θ (57)

while the scalar product is characterized by

⟨ψ1|ψ2⟩ =
1

cosα
((a∗1a2 + b∗1b2) + i sinα(b∗1a2 − a∗1b2)) (58)

Notice that, once again, we have

(∆H)2 =
w2

4
(59)

and, consequently, the minimal time (45). This contradicts Bender’s result
[8] that PT -symmetric quantum mechanics allowed to decrease the transition
time between two states, even going as far as making it zero. The reason is
that in the paper [8], Bender chose the standard scalar product and that this
one does not allow to orthonormalize the eigenvectors of the Hamiltonian.

4.3 The Tu-symmetric quantum mechanics

Taking account of (36) in (50), we are led to

(∆H)2 =
w2

4
− r2 cos2(θ − ϕ)

cos2 ϕ
(60)
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One more time, we recover the same maximal standard deviation (59) and
thus the same minimal transition time (45) provided

ϕ = θ ± π

2
(61)

This choice reduces the difference between E+ and E− to

w = 2
√

(r2 − s2) cos 2θ (62)

while the inner product now reads

⟨ψ1|ψ2⟩ =
1√

s2 − r2
(s(a∗1a2 + b∗1b2) + ir(b∗1a2 − a∗1b2)) (63)

We note, in an obvious way, that if the scalar products were identical, gener-
ally speaking, for the PT - and Tu- symmetric versions of quantum mechan-
ics, they differ as soon as additional constraints appear in order to ensure a
minimal transition time between two states.

In conclusion of this section, we note that the minimal transition time
between two states is the same whatever the version of quantum mechanics
considered. It is precisely given by (45). This is true for the three particular
cases treated here but it is also true in all generality. When we look at
equation (50), we can easily convince ourselves that the maximum standard
deviation is always the same, i.e. w

2
, if the difference between the two energy

levels is fixed at w.
The only way to improve this time, to decrease it, would be to lift our only
working hypothesis, i.e. to stop considering real energies only.
Let us mention in a few words that this result can also be found in another
way by returning to the equation (41). Indeed by using

eiΣσ⃗.n⃗ = cosΣ + i sinΣ σ⃗.n⃗ (64)

where σ⃗ are the usual Pauli matrices and n⃗ a normalized vector (according
to the usual scalar product), we can write the operator

e−
i
h̄
tH (65)

as

e−
i
2h̄

t(r cos θ+u cosλ)

(
T+ T1
T2 T−

)
(66)
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with

T+ = cos(
tw

2h̄
)− i

w
(r cos θ − u cosλ+ 2ir sin θ) sin(

tw

2h̄
)

T− = cos(
tw

2h̄
) +

i

w
(r cos θ − u cosλ+ 2ir sin θ) sin(

tw

2h̄
)

T1 = −2i

w
seiϕ sin(

tw

2h̄
)

T2 = −2i

w
veiβ sin(

tw

2h̄
)

Acting this operator on the state (49), we fix the final state as

|ψF ⟩ = − i

w
e−

i
2h̄

t(r cos θ+u cosλ)

√
sv cos β cosϕ− r2 sin2 θ

v cos β

(
ψ1

ψ2

)
(67)

with
ψ1 = r cos θ − u cosλ+ 2ir sin θ

ψ2 = 2veiβ

This result takes into account the fact that the final state must be normalized
and possibly orthogonal to the initial state. Such an demand also implies

cos(
tw

2h̄
) = 0 (68)

or the minimum standard time (45) which appears once again, confirming
our previously mentioned results.

5 Conclusion

Our goal was to show that it is possible to point out real energies if we aban-
don the (sufficient but not necessary) hypothesis of working with Hamiltoni-
ans realized through Hermitian matrices. This observation had already been
made by Bender and Boettcher in 1998 [1] when they highlighted a quantum
mechanics which gives pride of place to discrete P and T symmetries.
What we are convinced of here is that this version of quantum mechanics
is one of many possible. We have pointed, in particular, to the possibility
of a quantum mechanics associated with a unitary time reversal operator.
Real energies do appear: they are even opposed just like those of the Dirac
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equation.
Each version of quantum mechanics has two points in common: the reality
of energies and the minimal time to go from one quantum state to another,
identical in all versions. What differentiates them is the underlying scalar
product, allowing to consider a multitude of Hamiltonians which would not
have been studied in the standard version because they are not Hermitian.
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