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Abstract

The exterior metric developed by K. Schwarzschild in 1916, as a so-
lution to Einstein’s equations in vacuum, is static, having a timelike
Killing vector field that is hypersurface orthogonal. This property pre-
cludes the presence of a cross term dr dt in the metric in Schwarzschild
coordinates. However, a coordinate transformation by Eddington reintro-
duces this cross term, revealing that the singularity at the horizon is due
to a coordinate choice. In a recent paper, we showed that in Eddington
coordinates, the infall time to the horizon is finite from the point of view
of a distant observer. In the present paper, we build on this result and
on the work of Einstein and Rosen to construct a Wormhole and a White
Fountain as a One-Way Membrane. This membrane connects two semi-
Riemannian PT-symmetric spaces through a "bridge" that can be crossed
in only one direction.
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1 Solutions of Einstein’s equation reflecting dif-
ferent topologies

We begin this paper by a review of some the work stemming from the discovery
by Schwarzschild of an exact solution to the Einstein field equations in vacuum.
The work of Einstein and Rosen [3] is of particular importance for the present
paper since we will be interested in the fate of a particle crossing an Einstein-
Rosen bridge. At first sight this line of inquiry may look like a dead end to some
readers. Indeed, the Einstein-Rosen bridge has often been presented as non-
traversable in the literature. In Section 2 we point out that this conclusion is in
fact based on an analysis of the Kruskal-Szekeres extension, which as a geometric
object is very different from an Einstein-Rosen bridge. The main developments
of the paper take place in Sections 3 and 4. We show that a particle crossing the
bridge undergoes a PT-symmetry, and we discuss its physical significance. We
will in fact not work with the Einstein-Rosen bridge as defined in the seminal
paper [3], but with a modified version studied in [9]. One major reason for this
modification is that, as explained below in Section 1, the bridge as defined in [3]
is not properly glued at the throat in the following sense: as is well known,
infalling geodesics do not reach the wormhole throat for any finite value of the
Scwharzschild time parameter t. The construction in [9] is inspired by [6, 7] and
solves this problem.

In 1916, Karl Schwarzschild successively published two papers ([15],[16]).
The first one presented the construction of the solution to Einstein’s equation
in vacuum, based on the following assumptions:

• Stationarity : Independence of the metric terms with respect to the time
coordinate, i.e., invariance by time translation.

• Isotropy and spherical symmetry, i.e., invariance by SO(3).

• Absence of the dr dt cross term.

• Lorentzian at infinity.

He rapidly completed this solution, called the exterior Schwarzschild met-
ric, with an interior metric [16] describing the geometry inside a sphere filled
with a fluid of constant density ρo and a solution to Einstein’s equation with a
second member. The conditions for connecting the two metrics (Continuity of
geodesics) were ensured. The phenomena of the advance of Mercury’s perihe-
lion and gravitational lensing confirm this solution. K. Schwarzschild worked to
ensure that the conditions governing these two metrics were in accordance with
physical reality.

As an example, in the present day, neutron stars, owing to their stagger-
ing density and formidable mass, stand as natural cosmic laboratories, probing
realms of density and gravity unreachable within terrestrial laboratories. Let us
consider two distinct ways through which a neutron star might reach a state of
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physical criticality.

In a scenario where the star’s density, ρo, remains constant, a characteristic
radius r̂ can be defined. Then, a physical criticality is reached when the star’s
radius is :

(1) Rcrϕ =

√
8

9
r̂ =

√
c2

3πGρo

with

(2) r̂ =

√
3c2

8πGρo

Thus,

• For the exterior metric, it was necessary that the radius of the star be less
than r̂.

• As for the interior metric, the radius of the star had to be less than Rcrϕ
because a larger radius leads the pressure to rise to infinity at the center
of the star.

Next, for massive stars, an imploding iron sphere can present a complex sce-
nario. Assuming the sphere’s mass M is conserved during implosion, we must
consider two important critical radius :

In the core part, the geometric criticality radius is given by the Schwarzschild
Radius which is :

(3) Rcrγ = Rs = 2
GM

c2

Outside of this mass, the physical critical radius is given by 1

With mass conservation expressed as M = 4
3πR

3ρo, we can explore how the
variable density ρo during implosion impacts these critical radius.

Indeed, if physical criticality is reached during implosion, we have R = Rcrϕ .
Then, substituting the mass conservation equation into 1, we get :

(4) R = Rcrϕ = 2.25
GM

c2
> Rcrγ

We can deduce that if the physical criticality is reached for a mass M , then
it occurs before geometric criticality appears.

K. Schwarzschild also emphasized that the measurements pertained to con-
ditions far exceeding what was understood within the framework of the astro-
physical reality of his time.
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It is also important to note that the topology of this geometric solution is
built by connecting two bounded manifolds along their common boundary, a
sphere S2 with an area of 4πR2

o (Radius of the star).

In 1916, Ludwig Flamm considered the external solution as potentially de-
scribing a geometric object. The concern was then an attempt to describe
masses as a non-contractible region of space ([4]).

In 1934, Richard Tolman was the first to consider a possible handling of the
most general metric solution introducing a cross term dr dt. However, for the
sake of simplification, he immediately eliminated it using a simple change of
variable ([20]).

In 1935, Einstein and Rosen proposed, within the framework of a geomet-
ric modeling of particles, a non-contractible geometric structure, through the
following coordinate change ([3]):

(5) u2 = r − 2m

The metric solution then becomes:

(6) ds2 =
u2

u2 + 2m
dt2 − 4u2(u2 + 2m)du2 − (u2 + 2m)2(dθ2 + sin2 θdϕ2)

The authors thus obtain a non-contractible geometric structure, termed a
"space bridge", where a closed surface of area 4πα2, corresponding to the value
u = 0, connects two "sheets" : one corresponding to the values of u from 0
to +∞ and the other from −∞ to 0. It is noteworthy that this metric is not
Lorentzian at infinity1. Although this metric, expressed in this new coordinate
system, is regular, the authors point out that at the throat surface, its determi-
nant becomes zero. In this geometric structure, two bounded semi-Riemannian
sheets are distinguished, the first corresponding to u > 0 and the second to
u < 0. It corresponds to their joining along their common boundary. The over-
all spacetime does not fit within the standard framework of semi-Riemannian
geometry since it does not fulfill the requirement det(gµν) ̸= 0 at the throat.
As pointed out in [19], it does fit within the more general framework of singular
semi-Riemannian geometry, which allows for degenerate metric tensors.

The Einstein-Rosen bridge (6) satisfies the Einstein field equations in vac-
uum on both sheets u > 0 and u < 0. However, there is an issue with the field
equations at the throat u = 0 since det(gµν) vanishes there, and this determi-
nant appears in the denominator of the field equations. This issue was already
recognized by Einstein and Rosen, and their proposed solution was to work with
a form of the field equations that is denominator-free (see equations (3a) in [3],

1 For this reason, the change of variables r2 = ρ2 + 4m2 was proposed by Chruściel ([1],
page 77) as an alternative to (5). See also Section 4 of the present paper, where we propose
an alternative to the change of variables from [1].
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and the paragraph after (5a)). These modified field equations (called nowadays
the "polynomial form of the field equations") are satisfied everywhere, includ-
ing at the throat. It was discovered much later that one can also work with the
original form of the field equations if a thin shell of "exotic matter" is added at
the throat [6, 7].

As a spacetime, the Einstein-Rosen bridge (6) suffers from the problem that
the time coordinate t becomes infinite on the throat (since infall time to the
throat is infinite in Schwarzschild coordinates). In (6) the 4-dimensional sheets
u > 0 and u < 0 are therefore not properly glued at the throat.2 Namely,
studying the passage of a particle from the sheet u > 0 to u < 0 would require
to go through t = ∞, which is not a well defined part of the manifold. We will
see how to fix this problem in Section 3.

In 1939, Oppenheimer and Snyder, capitalizing on the complete decoupling
between proper time and the time experienced by a distant observer, in the
absence of a cross term in dr dt, suggested using the external metric solution
to describe the "freeze frame" of the implosion of a massive star at the end of
its life. By considering that the variable t is identified with the proper time
of a distant observer, it creates this "freeze frame" pattern such as a collapse
phenomenon whose duration, in proper time, measured in days, seems for a
distant observer to unfold in infinite time ([13]). This paper was considered as
the foundation of the black hole model.

In 1960, Kruskal extended the geometric solution to encompass a contractible
spacetime, organized around a central singularity corresponding to r = 0. The
geodesics are extended for r < α. The black hole model (with spherical symme-
try3) then takes its definitive form as the implosion of a mass, in a brief moment,
perceived as a "freeze-frame" by a distant observer ([10]). The Schwarzschild
sphere is then termed the "event horizon".

In 1988, M. Morris and K. S. Thorne revisited this geometric interpretation
by abandoning contractibility, not to attempt to obtain a geometric modeling of
the solution, but to study the possibility of interstellar travel, through "worm-
holes", using the following metric ([12]):

(7) ds2 = −c2dt2 + dl2 + (b2o + l2)(dθ2 + sin2 θdϕ2)

By focusing their study on the feasibility of interstellar travel, the authors
highlight the enormous constraints associated with such geometry as well as its
unstable and transient nature.

2Gluing the spatial (3-dimensional) parts of the two sheets does not raise any special
difficulty, however.

3In 1963, Roy Kerr constructed the stationary axisymmetric solution to Einstein’s equation
in vacuum. However, in this article, we limit ourselves to the interpretations of the stationary
solution with spherical symmetry.
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Figure 1: Page 396 of the article by M. Morris and K.S. Thorne (1988)

2 Distinction between the Kruskal-Szekeres Ex-
tension and the Einstein-Rosen Bridge

The Kruskal-Szekeres extension and the Einstein-Rosen bridge are two major
constructions in the study of spacetime geometry around a wormhole. However,
their geometric natures differ significantly.

The Kruskal-Szekeres spacetime is defined by a traditional semi-Riemannian
manifold, characterized by a non-degenerate metric at every point. This makes
it consistent with the general framework of general relativity, where the metric’s
signature is homogeneous and does not vary [11], [21].

In contrast, the Einstein-Rosen spacetime has a degenerate metric at certain
points, namely, at the bridge’s throat. This characteristic places it in the class
of singular semi-Riemannian manifolds as defined by Ovidiu Stoica [19]. This
fundamental distinction shows that the Kruskal-Szekeres spacetime is not simply
an extension of Einstein-Rosen but a fundamentally different construction.
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This geometric difference between the two spacetimes is also responsible for
a physical difference. Indeed, as already mentioned in Section 1, for the field
equations to be satisfied at the throat of the Einstein-Rosen bridge one needs
to add a thin shell of exotic matter at the throat [6, 7] (or one can work with
the polynomial form of the field equations as in [3]). By contrast the Kruskal-
Szekeres extension satisfies the ordinary form of the field equations in vacuum,
including at the event horizon.

Thus, these two spacetimes cannot be considered versions of each other but
rather two distinct interpretations of the geometry around a wormhole. This
was already pointed out in several papers by Guendelman et al. Consider in
particular [6], where they write:

[29] The nomenclature of “Einstein-Rosen bridge” in several standard
textbooks (e.g. [15]) uses the Kruskal-Szekeres manifold. The latter
notion of “Einstein-Rosen bridge” is not equivalent to the original
construction in [14]. Namely, the two regions in Kruskal-Szekeres
space-time corresponding to the outer Schwarzschild space-time re-
gion (r > 2m) and labeled (I) and (III) in [15] are generally discon-
nected and share only a two-sphere (the angular part) as a common
border (U = 0, V = 0 in Kruskal-Szekeres coordinates), whereas in
the original Einstein-Rosen “bridge” construction the boundary be-
tween the two identical copies of the outer Schwarzschild space-time
region (r > 2m) is a three-dimensional hypersurface (r = 2m).

We can also cite two other papers whose authors make the same obser-
vation regarding the Kruskal-Szekeres extension’s inadequacy in properly an-
alyzing the Einstein-Rosen bridges: that of Guendelman et al. [7] and that
of Poplawski [14]. Indeed, to distinguish these spacetimes, Poplawski uses the
terms "Schwarzschild bridge" and "Einstein-Rosen bridge".

For all these reasons, we will not work with the Kruskal-Szekeres extension
in this paper. We note in particular that the common claim [5, 11] that the
Einstein-Rosen bridge is not traversable is actually based on an analysis of the
Kruskal-Szekeres extension; but, as pointed out in [7, 9], the original Einstein-
Rosen bridge [3] is in fact traversable.

3 Construction of a Lorentzian geometric solu-
tion at infinity with two sheets

In this section we study the symmetries of a modified version of the original
Einstein-Rosen bridge [3]. Let us consider the exterior Schwarzschild metric in
its classical form under the signature (+ - - -) :

(8) ds2 =
(
1− α

r

)
c2dt2 −

(
1− α

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2)
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As recalled in Section 2, Einstein and Rosen defined their "bridge" from the
change of variables r = α + u2 in 8. The starting point for the definition of
the modified bridge is the idea from [6, 7] to work instead with the change of
variables r = α+ |η| where η ∈ R is a new radial parameter. As shown in [6, 7],
the resulting spacetime satisfies the original form of the field equations, including
at the throat η = 0, if some "exotic matter" (a lightlike membrane) is added
at the throat. By contrast, as recalled in Section 2, Einstein and Rosen had to
work with the polynomial form of the field equations.

As we now explain, the modified bridge studied in this section is obtained
by combining the change of variables r = α + |η| with Eddington’s change of
variables for the time parameter.

3.1 PT-symmetry
Eddington [2] introduced his change of variables

(9) t+E = t+
α

c
ln
∣∣∣ r
α
− 1

∣∣∣
with the aim of eliminating the coordinate singularity at the Schwarzschild
surface in r = α. The metric becomes:

(10) ds2 =
(
1− α

r

)
c2dt+E

2 −
(
1 +

α

r

)
dr2 − 2αc

r
drdt+E − r2

(
dθ2 + sin2 θdφ2

)
We know that under these conditions free fall time is finite in Eddington

coordinates, i.e., a massive infalling particle will reach the surface r = α for a
finite value of t+E [9]. It is however well-known that the surface r = α is not
reached for any finite value of the Schwarzschild time parameter t.

By contrast, escape time for t+E remains infinite. The metric for which the
escape time is finite will be obtained by performing this change of variable:

(11) t−E = t− α

c
ln
∣∣∣ r
α
− 1

∣∣∣
In this case, the metric becomes:

(12) ds2 =
(
1− α

r

)
c2dt−E

2 −
(
1 +

α

r

)
dr2 +

2αc

r
drdt−E − r2

(
dθ2 + sin2 θdφ2

)
The modified bridge studied in [9] combines the change of variables r = α+ |η|
with (9), i.e., we work with the new time parameter t′ = t+ α

c ln
∣∣ η
α

∣∣ .
Thus, the metric becomes:

(13)

ds2 =
|η|

α+ |η|
c2dt′2− 2α+ |η|

α+ |η|
dη2− 2αc

α+ |η|
dη dt′−(α+ |η|)2

(
dθ2 + sin2 θdφ2

)
.

This line element already appears in the appendix of [6] in slightly different
notation. It describes a spacetime made of two sheets connected at the throat
η = 0. The sheet η > 0 is equipped with the ingoing Eddington metric (10)
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and the sheet η > 0 is equipped with the outgoing metric (12). As pointed
in [9], an infalling particle beginning its trajectory in the region η > 0 will reach
the throat η = 0 for a finite value of the Eddington time parameter t′, and
will then continue in the region η < 0. This resolves the gluing problem that
was mentioned in Section 1 for the original version of the Einstein-Rosen bridge
(recall that the throat is reached for t = ∞ with the bridge as defined in [3]).

The line element (13) is invariant under the joint transformations η 7→
−η, t′ 7→ −t′. The physical significance of this symmetry will be discussed
in Section 3.3. Note that the line element (6) has a similar symmetry, and in
fact it is more symmetric since it is invariant under each of the two transforma-
tions u 7→ −u and t 7→ −t. This extra symmetry is due to the absence in (6) of
a cross term such as the term dηdt′ in (13).

3.2 Change of orientation
In general, we expect a P-symmetry or PT-symmetry to be associated to a
change of orientation. In this section we confirm that this is indeed the case by
taking a closer look at the geometry of the modified bridge (13) in the vicinity
of the throat η = 0. In this representation, the radial geodesics of the first sheet
are orthogonal to the tangent plane at the "space bridge" when they reach it.
These same geodesics, emerging in the second sheet, are also orthogonal to
this same tangent plane. Let’s now consider four points forming a tetrahedron,
which converge towards the "space bridge" along radial trajectories. We can set
a 3D orientation by defining a direction of traversal of the points on each of the
equilateral triangles forming the tetrahedron. With respect to the coordinate
r = α+ |η|, it seems as if these points bounce off a rigid surface, leading to an
inversion of the orientation of the tetrahedron. The upstream and downstream
tetrahedra then become enantiomorphic (Figure 2).

Figure 2: Inversion of space when crossing the "space bridge"

The change of orientation is already visible in the simplified 2-dimensional
representation of a wormhole in Figure 1. Let us look at this figure from above,
and imagine a triangle gliding on the surface of the top sheet toward the throat.
After crossing the throat, the triangle starts gliding on the bottom sheet and we
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now see it upside now from our position above the top sheet. From our point
of view, its orientation has therefore changed. The physical meaning of this
change of orientation will be discussed in Section 3.3.

The geometric structure of the pair of metrics 6 and 8 thus represents a
"bridge" connecting two PT-symmetric semi-Riemannian spaces.

The element of this 2D-surface is then given by:

(14)
√
|det(gµν)| =

√
|gθθgϕϕ| = α2 sin(θ)

As this metric describes a 2D-surface sphere (like a sphere of constant radius
in a 4D spacetime), then the differential area element is given by :

(15) dA =
√
|det(gµν)|dθdϕ = α2 sin(θ)dθdϕ

To find the minimal area of this "space bridge", we must integrate this area
element over all possible angles :

(16) A =

∫ 2π

0

∫ π

0

α2 sin(θ)dθdϕ = 4πα2

It’s therefore non-contractible with a minimal area of 4πα2.

3.3 Identification of the two sheets
In Section 3.2 we have described the change of orientation of a tetrahedron
crossing the wormhole throat in Figure 2, and of a triangle crossing the throat
in Figure 1. The change of orientation of the triangle is only visible for a person
looking at Figure 1 in its entirety. Therefore, it does not correspond to any
physically observable phenomenon since any physical observer must be located
on one of the two sheets and cannot see directly the other sheet. The situation
is the same in Figure 2 : The middle picture represents the situation from a
point of view where we could look simultaneously at the two sides of the worm-
hole (B and C have not reached the throat yet, while A has already crossed
it and emerges on the other side). This is again impossible for a physical ob-
server: it seems that the PT-symmetry as described so far does not correspond
to any physically observable phenomenon. We can however give it a real physi-
cal meaning with an additional ingredient due to Einstein and Rosen [3].

Recall that their motivation was not to investigate interstellar travel as in
Figure 1, but to describe elementary particles by solutions to the equations of
general relativity. Quoting from the abstract of their paper: "These solutions
involve the mathematical representation of physical space by a space of two iden-
tical sheets, a particle being represented by a "bridge" connecting these sheets."
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Einstein and Rosen also suggest that the multi-particle problem might be stud-
ied by similar methods, but this work is not carried out in their paper.

Quoting again from [3] : "If several particles are present, this case corre-
sponds to finding a solution without singularities of the modified Eqs. (3a),
the solution representing a space with two congruent sheets connected by several
discrete "bridges."" From their point of view, two points in the mathemat-
ical representation (6) with identical values of θ, ϕ but opposite values of u
therefore correspond to two points in physical space with the same value of r
(r = u2+2m). If we make the same identification of points with opposite values
of u, the situation represented in the middle picture of Figure 2 can be seen by a
physical observer. The change of orientation described in Section 3.2 now has a
real physical meaning. We will elaborate on the interpretation of the combined
PT-symmetry in the next section. In Section 5 we present a precise mathe-
matical model of the identification of the two sheets for the modified bridge
described in Section 3.1.

4 Another Representation of this Geometry
By performing the following change of variable to 10 and 12 :

(17) r = α (1 + log ch(ρ))

We then obtain the following two metrics:

ds2 =

(
log cosh(ρ)

1 + log cosh(ρ)

)
c2dt+E

2 −
(
2 + log cosh(ρ)
1 + log cosh(ρ)

)
α2 tanh2(ρ)dρ2

− 2cα

(
tanh(ρ)

1 + log cosh(ρ)

)
dρdt+E − α2(1 + log cosh(ρ))2(dθ2 + sin2 θdφ2)

(18)

ds2 =

(
log cosh(ρ)

1 + log cosh(ρ)

)
c2dt−E

2 −
(
2 + log cosh(ρ)
1 + log cosh(ρ)

)
α2 tanh2(ρ)dρ2

+ 2cα

(
tanh(ρ)

1 + log cosh(ρ)

)
dρdt−E − α2(1 + log cosh(ρ))2(dθ2 + sin2 θdφ2)

(19)

Therefore, to obtain the metric that structures the second sheet for ρ < 0 in
order to ensure the continuity of the geodesics translating the transit of matter
through the "bridge" with a finite escape time on this sheet, we must apply the
T-symmetry where the time coordinate is reversed upon crossing, i.e., t+E = −t−E .

This T-symmetry is not merely a result of the coordinate choice but has a
deeper physical implication. It indicates that the two sheets are time-reversed
versions of each other, meaning that events in one sheet are mirrored as re-
versed in time in the other sheet. This is crucial for maintaining the overall
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causal structure and physical consistency of the spacetime. The time reversal
symmetry ensures that particles traversing the bridge experience a continuous
and consistent physical law, even though their time direction is inverted upon
crossing.

In the context of our construction, this T-symmetry implies that an observer
in one sheet would perceive the events in the other sheet as happening in re-
verse temporal order. This is more than a mathematical artifact; it reflects a
physical reality where the symmetry of time reversal plays a fundamental role
in connecting the two sheets through the bridge.

Jean-Marie Souriau’s dynamic group theory provides further insight into this
phenomenon, showing that the inversion of the time coordinate results in an in-
version of energy, transforming the motion of a particle of mass m into a motion
of a particle of mass −m [18]. This suggests that the T-symmetry might lead to
observable effects where particles and antiparticles are connected through the
bridge.

Those metrics, which are Lorentzian at infinity, structures two sheets corre-
sponding to ρ varying respectively from 0 to +∞ and −∞ to 0. On the "space
bridge" for ρ = 0, the components gtt and gρρ of the metric tensor disappear,
leaving only the last two spatial components gθθ and gϕϕ, which are:

(20) gµν =


0 0 0 0
0 0 0 0
0 0 −α2 0
0 0 0 −α2 sin2 θ


On this particular coordinate system, we can infer that its determinant is

zero. The P-symmetry arises from the fact that adjacent points, this time ex-
plicitly differentiated, are inferred by ρ → −ρ. This transformation plays the
same role as u → −u in 6.

One nice property of the change of variables (17) is that the two resulting
metrics are explicitly Lorentzian as |ρ| → +∞. This was also the motivation
for the change of variables r2 = ρ2+4m2 proposed by Chruściel [1] and already
mentioned in footnote 1.

By associating these metric solutions under these two conditions, we would
obtain a Wormhole and a White Fountain as a One-Way Membrane.

By associating these metric solutions under these two conditions, we would
obtain a Wormhole and a White Fountain as a One-Way Membrane, connect-
ing two semi-Riemannian spaces through a "bridge" that can be crossed only
in one direction4. Let us assume further that the wormhole does not lead to

4The term White Fountain refers to a hypothetical construct where the bridge allows
passage only in one direction, similar to the concept of a white hole in cosmology. This termi-
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another universe as in Figure 1.a, or to a distant point in the same universe as
in Figure 1.b; but that the two congruent sheets correspond to the same points
in the physical universe through the transformation u → −u (or ρ → −ρ), as
suggested in [3] and in Section 3.3. We can then conclude that the two sheets
are PT-symmetric5.

In the literature, the inversion of the time coordinate has been analyzed in
various ways. In particular:

(i) It was analyzed through the dynamic group theory of J-M Souriau ([17],[18]),
and was shown to result in an inversion of energy. Consequently, time re-
versal transforms every motion of a particle of mass m into a motion of
a particle of mass −m ([18], page 191). On page 192 of the same book,
the author offers an alternative analysis which avoids negative masses.
Souriau points out that these alternatives should be judged according to
their ability to explain experiments.

(ii) Feynman has offered an interpretation of antimatter as ordinary matter
traveling backward in time.

(iii) It is known from theoretical analysis (the CPT theorem) and from ex-
periments that elementary particles obey physical laws that are invariant
under CPT-symmetry.

The PT-symmetry uncovered in Section 3 can be viewed as a CPT-symmetry
followed by a C-symmetry (inversion of electric charge). This suggests that the
PT-symmetry might lead to observable effects where particles and antiparticles
are connected through the bridge. If the second sheet already contains ordi-
nary matter, it could interact with the antimatter coming from the first sheet,
constituting a potential source of energy. This provides a profound physical
interpretation of the PT-symmetry in our geometric construction beyond the
simple choice of coordinates.

5 The Bimetric Bridge
At the end of Section 3 we explained that according to [3], two points in the
mathematical representation (6) with identical values of θ, ϕ but opposite values
of u correspond to two points in physical space with the same value of r (r =
u2 + m). If we identify in (6) two points with opposite values of u, it seems
that we are just left with a single sheet carrying the Schwarzschild solution in

nology is introduced to differentiate from traditional Einstein-Rosen bridges and to emphasize
the unidirectional nature of the structure.

5This PT-symmetry is primarily a mathematical symmetry of the construction, represent-
ing how the two sheets mirror each other across the bridge. For physical spacetime, this
symmetry indicates that the identified points on the two sheets correspond to the same phys-
ical location, but the interpretation requires careful consideration of the physical implications
and potential observable effects.
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the region r > α. The "throat" u = 0 (or r = α, in Schwarzschild coordinates)
therefore appears as a limit of space rather than a gateway to a second sheet.

For the modified bridge studied in Section 3.1, the situation is more inter-
esting because the two sheets carry different metrics (the ingoing and outgoing
Eddington metrics). After identification of two points with opposite values of η
in (13), we are again left with a single sheet but it is equipped with the two
metrics:

(21) ds2+ =
(
1− α

r

)
c2dt2 −

(
1 +

α

r

)
dr2 − 2αc

r
drdt− r2

(
dθ2 + sin2 θdφ2

)

(22) ds2− =
(
1− α

r

)
c2dt2 −

(
1 +

α

r

)
dr2 +

2αc

r
drdt− r2

(
dθ2 + sin2 θdφ2

)
We therefore obtain a bimetric model. A particle that is infalling according

to the first metric will reach the throat r = α for a finite value of t (say, t = t0).
For t > t0 the second (outgoing) metric takes over. The particle will effectively
seem to go back in time (it retraces its steps) since (22) is obtained from (21) by
the transformation t 7→ −t. This is consistent with the PT-symmetry uncovered
in Section 3.1.

Comparison with Hossenfelder’s bimetric theory. A "bimetric theory
with exchange symmetry" was proposed by Hossenfelder in [8]. There are two
types of matter in this theory, which can be viewed as matter of "positive
mass" and "negative mass". Each type of matter follows the geodesics of its own
metric. In Hossenfelder’s theory, metric (21) describes the movement of positive
masses in a field created by a point of positive mass since her theory reduces to
General Relativity in this case. We therefore obtain the ordinary Schwarszchild
metric (see equation (36) in [8]), or 21) in the ingoing Eddington coordinates.
It is therefore natural to ask whether (22) might describe the movement of a
particle of negative mass in the field created by the same positive positive mass as
in (21). The answer to this question is negative because in Hossenfelder’s theory,
the corresponding metric is obtained from the ordinary Schwarszchild metric (8)
by the transformation α 7→ −α (equation (37) in [8]). If we apply Eddington’s
change of variables to the resulting metric, we do not obtain anything like (22).6

6 Conclusion
This new geometric object behaves as a "One-Way Membrane", a union of
a wormhole and a white fountain through a "bridge". The wormhole allows
passage between two points, while the white fountain aspect ensures the uni-
directional nature, preventing return through the bridge. We introduce a new
geometric construction based on the static solution with spherical symmetry of

6As pointed out in Section V of [8], "changing to one of the more well-behaved systems
with e.g. in-/outgoing Eddington-Finkelstein coordinates will be a nice transformation for the
usual metric g, but completely mess up the other metric h."
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Einstein’s equation in vacuum, by limiting ourselves to the only two hypotheses,
inspired by physics: isotropy (invariance by SO(3)) and stationarity (invariance
by time translation). This new geometric object behaves as a "One-Way Mem-
brane", a union of a wormhole and a white fountain through a "bridge". The
wormhole allows passage between two points, while the white fountain aspect
ensures the unidirectional nature, preventing return through the "bridge" . With
a Lorentzian metric at infinity, this structure connects two PT-symmetric enan-
tiomorphic semi-Riemannian spaces. Therefore, this object corresponds to the
two-sheets covering of a four-dimensional spacetime, presenting themselves as
PT-symmetric, connected along a "bridge". Taking our inspiration from Ein-
stein and Rosen, we have suggested to represent a point in physical space by a
pair of congruent points, one on each of the two sheets. We have shown that
this identification of congruent points should lead to observable physical effects
when an object crosses the space bridge between the two sheets. Finally, we
have proposed a bimetric model to realize this identification, and we compared
it to Hossenfelder’s bimetric theory.
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