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Abstract

We develop the mathematical tools for a physical theory of relativity with positive and negative
matter. We focus, like Jean Marie Souriau, on the action of the Poincaré group on the elements of
the dual of the Lie algebra of the Poincaré group. We end the text with the study of two Minkowski
half-spaces separated by an interface where an action of the Poincaré group occurs.
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Introduction

We will consider one type of objects in this text:

● Spin particles. The particles we will consider in this text are objects with essentially two charac-
teristics: mass and spin. They are sensitive to the gravity of a body but are too small to produce
spacetime deformation.

Thus, all the objects we consider are devoid of electric charge. Physical reality is certainly far from
corresponding to this scheme, but we choose these limits.

In conventional physics, only objects with positive mass are considered. The idea of Jean-Pierre
Petit (see [5], [6], [7], [8]) is to combine three existing models:

● the introduction of negative mass, as done by H. Bondi (see [1]) and W. Bonnor (see [2]);

● the introduction of a spacetime covering, as introduced by A. Sakharov (see [9], [10], [11]);

● the introduction of a general relativity model with two field equations, as done by S. Hossenfelder
(see [3], [4]).

This Janus space is a two-sheeted spacetime covering, with positive masses living in one space and
negative masses living in the other. Only gravitational interaction creates a link between these two
spaces. This Janus universe can then be equipped with two field equations. More detailed information
from Jean-Pierre Petit can be found in the book by Hicham Zejli (see [18]).

The purpose of this text is to define a "possible" mathematical framework for studying these ideas
in affine case. We study the motion of a spin particle in a Minkowski space. The mass of a particle
can be either a positive or negative real number. The guiding thread of this text is the book by Jean
Marie Souriau [17].

This text is a compilation of notes I took while working on the Janus model. It is in no way
intended to claim the work of Jean-Pierre Petit, but simply to assist those who would like to explore
his research and offer a more mathematical perspective. This work is not original; the ideas and results
are already present in the works of Jean-Marie Souriau and Jean-Pierre Petit.
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1 Action of the Poincaré group

1 Action of the Poincaré group

In this section, we study the action of the Poincaré group on the elements of the dual of its Lie algebra.

1.1 Lorentz Group

We begin by recalling the usual properties of the Lorentz group (see subsection B.1 for the definition
of the τ maps).

Definition 1.1

The Minkowski space R1,3 is the space R4 equipped with the scalar product:

η ∶= dx0 ⊗ dx0 − dx1 ⊗ dx1 − dx2 ⊗ dx2 − dx3 ⊗ dx3

i.e. we have :
∀X,Y ∈ R4, η (X,Y ) ∶= τ (X)Y.

Let X,Y ∈ R1,3. We say that X and Y are orthogonal if τ (X)Y = 0. We then denote X ⊥4 Y .

By setting (ct, x, y, z) ∶= (x0, x1, x2, x3) (with c the speed of light), we have the usual form:

η ∶= c2dt⊗ dt − dx⊗ dx − dy ⊗ dy − dz ⊗ dz.

We renormalize by assuming c ∶= 1, we then obtain that:

η = dt⊗ dt − dx⊗ dx − dy ⊗ dy − dz ⊗ dz; (1)

Let us set (see also subsection B.1):

I1,3 ∶= (ηij)ij ∶= (
1 0
0 −I3

) . (2)

We thus have:

η =
4

∑
i=1

4

∑
j=1

ηijdx
i ⊗ dxi. (3)

We then deduce the definition of the Lorentz group.

Definition 1.2

The Lorentz group is defined by:

L or ∶= O(1,3,R) ∶= {L ∈ GL(4,R), ∀X,Y ∈ R4, η(LX,LY ) = η(X,Y )} .

The Lorentz group is the subgroup of GL(4,R) of automorphisms preserving the scalar product
of R1,3. Let us use the applications τ defined in subsection B.1 of the appendix. We have for all
L ∈ GL(4,R):

L ∈L or ⇐⇒ ∀X,Y ∈ R4, η(LX,LY ) = η(X,Y )
⇐⇒ ∀X,Y ∈ R4, (LX)T I1,3(LY ) =XT I1,3Y

⇐⇒ LT I1,3L = I1,3
⇐⇒ τ(L)L = I4

Thus:
L or = {L ∈ GL(4,R), LT I1,3L = I1,3} = {L ∈ GL(4,R), τ(L)L = I4} . (4)

We have the usual lemma.
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1 Action of the Poincaré group

Lemma 1.3

Let L ∈L or. We have:
det(L) = ±1 , [L]200 ≥ 1.

Proof. Since LT I1,3L = I1,3, by taking the determinant we have det(L)2 = 1, hence det(L) = ±1. And
since:

1 = [I1,3]00 = [LT I1,3L]00 =
4

∑
i=1

4

∑
j=1

[LT ]0iηij[L]j0 = [L]200 − [L]210 − [L]220 − [L]230,

we necessarily have [L]200 ≥ 1.

The Lorentz group thus has four connected components:

L or =L orn ⊔ L ors ⊔ L ort ⊔ L orst. (5)

with:

● L orn is the neutral component (its restricted subgroup), does not invert either space or time i.e.
defined by:

L orn ∶= SOo(1,3,R) ∶= {L ∈L or, det(L) = 1 ∧ [L]00 ≥ 1} ; (6)

● L ors inverts space i.e. defined by:

L ors ∶= {L ∈L or, det(L) = −1 ∧ [L]00 ≥ 1} ; (7)

● L ort inverts time but not space i.e. defined by:

L ort ∶= {L ∈L or, det(L) = 1 ∧ [L]00 ≤ −1} ; (8)

● L orst inverts both space and time i.e. defined by:

L orst ∶= {L ∈L or, det(L) = −1 ∧ [L]00 ≤ −1} . (9)

The first two components are grouped together to form the subgroup called orthochronous:

L oro ∶= SO(1,3,R) ∶=L orn ⊔ L ors (10)

The last two components form the subset antichronous, whose components invert time:

L ora ∶=L ort ⊔ L orst (11)

Thus, we have:
L or =L oro ⊔ L ora (12)

We will give another form to these connected components. Let:

T̃ ∶= −I1,3 , P̃ ∶= T̃. (13)

Definition 1.4

(i) The P̃T̃-group is the subgroup K̃ of L or of order 4 generated by P̃ and T̃ ie:

K̃ ∶= {P̃ν
P̃

λ
, ν, λ ∈ {0,1}} = {I4, P̃, T̃, P̃T̃} .
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1 Action of the Poincaré group

(ii) For all B ∈ K̃ , the B-component of L or is:

L or (B) ∶= {LB, L ∈L orn} .

We have for all ν, λ ∈ {0,1}:

L or (P̃ν
T̃

λ) = {LnP̃
ν
T̃

λ
, Ln ∈L orn} . (14)

We then have a simple representation of the four components of L or.

Lemma 1.5

The four connected components are:

L orn =L or (P̃0
T̃

0) =L or (I4) L ors =L or (P̃1
T̃

0) =L or (P̃)

L ort =L or (P̃0
T̃

1) =L or (T̃) L orst =L or (P̃1
T̃

1) =L or (P̃T̃)

Proof. Equalities are shown by double inclusion. For example, let’s demonstrate that L ors =L or (P̃).
Take L ∈ L ors (det(L) = 1 and [L]00 ≥ 1). Then we have det(LP̃) = −1 and [LP̃]00 ≥ 1, hence we
have Ln ∶= LP̃ ∈L orn. Since P̃

−1 = P̃, we can conclude that :

L = LnP̃ ∈L or (P̃) .

The inclusion in the other direction is trivial.

Thus, these 4 components are the 4 connected components of L or, we have the decomposition:

L or = ⊔
B∈K̃

L or (B) = ⊔
ν,λ∈{0,1}

L or (P̃ν
T̃

λ) . (15)

1.2 Linear Torsors

Recall that there is a simple way to calculate the Lie algebra g of a matrix Lie group G (i.e., a closed
subgroup of GL(n,R) with n ≥ 1) using the following equality:

g ∶= TInG = {M ∈M (n,R), ∀t ∈ R, etM ∈ G} . (16)

From this, we can deduce the following result (see section B of the appendix for important results on
the Lie algebra (A (1,3,R), [])).

Lemma 1.6

The group L or is a Lie group of dimension 6, and its Lie algebra is given by:

(lor, []) = (A (1,3,R), []).

Proof. The group L or is closed in GL(4,R) because it is the preimage of the singleton {I4} under the
continuous map f ∶M ∈M (4,R) Ð→ τ(M)M . By equation (16), the Lie algebra lor of L or is given
by:

lor ∶=TI4O(1,3,R) = {M ∈M (4,R), ∀t ∈ R, etM ∈ O(1,3,R)}
={M ∈M (4,R), ∀t ∈ R, τ (etM) etM = I4}

6 David Pigeon - Mathématiques



1 Action of the Poincaré group

Let us then define for any M ∈M (4,R) the smooth map from R to GL(4,R):

gM ∶ t ∈ Rz→ τ (etM) etM .

Let M ∈M (4,R). For all t ∈ R, we have:

gM(t) = I1,3 (etM)
T
I1,3e

tM = et(I1,3MT I1,3+M) = et(τ(M)+M)

Since g′M ∶ t ∈ Rz→ (τ(M) +M)et(τ(M)+M), we then have the equivalences:

M ∈ lor ⇐⇒ ∀t ∈ R, gM(t) = I4
⇐⇒ ∀t ∈ R, g′M(t) = 0 ∧ gM(0) = I4
⇐⇒ τ(M) +M = 0
⇐⇒ M ∈ A (1,3,R)

Thus, lor has the basis (see equation (97)) :

Base (lor) = {ei ⊖ 0 ∶= (0 eTi
ei 0

) , i ∈ {1,2,3}}⊔{0⊖ ei ∶= (
0 0
0 j(ei)

) , i ∈ {1,2,3}} . (17)

Similarly, L oro ∶= SO(1,3,R) is an open subset of O(1,3,R) because it is the preimage of the open
set {1} under the continuous map det ∶ O(1,3,R) Ð→ {±1}. Thus, the Lie algebra loro of L oro equals
lor.

We have the characterization of the dual of lor (see lemma B.6):

lor∗ = A (1,3,R)∗ = {{ M } ∶ Λz→ −1
2
Tr(MΛ), M ∈ A (1,3,R)} (18)

Definition 1.7

(i) The elements of lor∗ are called linear torsors.

(ii) Let µ̃ ∶= { M } ∈ lor∗. The matrix M(µ̃) ∶=M ∈ A (1,3,R) is called the moment matrix
associated with µ̃.

Let Ad∗ denote the coadjoint representation on lor∗:

Ad∗ ∶ lor Ð→ Aut(lor∗)
L z→ Ad∗L ∶ µ̃z→ (Λz→ µ̃ (L−1ΛL))

(19)

Definition 1.8

The action of the group L or on lor∗ is defined by the coadjoint representation, that is, for
any L ∈L or and any µ̃ ∈ lor∗, we denote this action by:

L ● µ̃ ∶= Ad∗L(µ̃).

We have a simple description of this action on the torsors.

7 David Pigeon - Mathématiques



1 Action of the Poincaré group

Proposition 1.9

Let L ∈L or and { M } ∈ lor∗. We have:

L ● { M } ={ LMτ(L) } .

Proof. We have:

(L ● { M })Λ = { M } (τ(L)ΛL) = −1
2
Tr (Mτ(L)ΛL) = −1

2
Tr (LMτ(L)Λ) = { LMτ(L) }Λ

and we have LMτ(L) ∈ A (1,3,R) because:

τ(LMτ(L)) = Lτ(M)τ(L) = −LMτ(L).

From proposition 1.9, we deduce the following corollary.

Corollary 1.10

Let L ∶= LnP̃
ν
T̃

λ ∈L or and µ̃ ∈ lor∗. We have:

M(L ● µ̃) = LM(µ̃)τ(L)

M ((LnP̃
ν
T̃

λ) ● µ̃) = LnP̃
ν
T̃

λ
MT̃

λ
P̃

ν
τ(Ln)

To describe the Lie algebra of L or, we can also use the isomorphism of Lie algebras (see subsec-
tion A.4 of the appendix for more details):

j ∶ (R3,∧) z→ (A (3,R), [ , ])

Thus, we have:

lor = A (1,3,R) = {(0 βT

β j(w)) , β,w ∈ R
3} . (20)

Therefore, for all { M } ∈ lor∗ and any Λ ∈ lor, there are unique ℓ, g, β,w ∈ R3 such that:

{ M }Λ = { (0 gT

g j(ℓ)) }(
0 βT

β j(w)) = −
1

2
Tr((0 gT

g j(ℓ))(
0 βT

β j(w))) = ℓ
Tw − gTβ (21)

We denote this last equality as:

{ ℓ g }(0 βT

β j(w)) . (22)

The dual lor∗ has the following description:

lor∗ = {{ ℓ g } ∶ (0 βT

β j(w)) z→ ℓTw − gTβ, ℓ, g ∈ R3} . (23)

We have the following definitions.

Definition 1.11

Let
µ̃ ∶= { M } ∶= { ℓ g } ∈ poin∗

8 David Pigeon - Mathématiques



1 Action of the Poincaré group

with the relation:

M = (0 gT

g j(ℓ)) .

(i) The vector ℓ ∶= ℓ(µ̃) ∈ R3 is called the angular momentum of M associated with µ̃.

(ii) The vector g ∶= g(µ̃) ∈ R3 is the relativistic barycenter of M associated with µ̃.

Proposition 1.12

Let { ℓ g } ∈ lor∗ and λ, ν ∈ {0,1}. We have:

(P̃ν
T̃

λ) ● { ℓ g } = { l (−1)λ+νg }

Proof. Let us set µ̃ ∶= { M } ∶= { ℓ g } ∈ lor∗. By corollary 1.10, we have :

M((P̃ν
T̃

λ) ● µ̃) = (P̃ν
T̃

λ)M(µ̃)τ(P̃ν
T̃

λ) = (P̃ν
T̃

λ)M(µ̃)T̃λ
P̃

ν

Thus we have:

(P̃ν
T̃

λ) ● { ℓ g } = (P̃ν
T̃

λ) ● { (0 gT

g j(ℓ)) }

= { P̃
ν
T̃

λ (0 gT

g j(ℓ)) T̃
λ
P̃

ν }

= { ( 0 (−1)λ+νgT
(−1)λ+νg j(ℓ) ) }

= { l (−1)λ+νg }

We deduce a simple expression of the action of the PT-group K on the torsors of lor∗. For any
{ ℓ g } ∈ lor∗, we have:

P̃ ● { ℓ g } = { ℓ −g } (24)

T̃ ● { ℓ g } = { ℓ −g } (25)

1.3 Poincaré Group

We define the Poincaré group as the group of isometries of Minkowski space. Mathematically, this
means that it is the affine group Aff(L or) associated with the Lorentz group L or.

Definition 1.13: Associated Affine Group

The Poincaré group is defined by:

Poin ∶= Aff(L or) ∶=L or ⋉R1,3.

For all (L,C), (L′,C ′), the composition law on Poin is defined by:

(L,C) ⋅ (L′,C ′) ∶= (LL′,C +LC ′). (26)

The action of an element A ∶= (L,C) ∈Poin on an element X ∈ R1,3 is given by:

A ●X = LX +C. (27)

We will revisit this action later with the matrix representation of the elements of Poin.

9 David Pigeon - Mathématiques



1 Action of the Poincaré group

1.4 Lie Algebra

Let poin be the Lie algebra of the Poincaré group. The Lie algebra poin is the vector space product
A (1,3,R) ×R4 equipped with the Lie bracket1:

[(Λ,Γ), (Λ′,Γ′)] ∶= ([Λ,Λ′],ΛΓ′ −Λ′Γ). (28)

It has dimension 10 = 6 + 4 over R, and a basis is given by:

Base (poin) = {(ei ⊖ 0,0), i ∈ {1,2,3}}⊔{(0⊖ ei,0), i ∈ {1,2,3}}⊔{(0, e(4)i ), i ∈ {1,2,3,4}} (29)

with:

Base (R4) ∶=
⎛
⎜⎜⎜
⎝
e
(4)
1 ∶=

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
, e
(4)
2 ∶=

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
, e
(4)
3 ∶=

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
, e
(4)
4 ∶=

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
. (30)

1.5 Matrix Representation

We will use a matrix representation of the group Poin and its Lie algebra through the following em-
bedding.

Lemma 1.14

Let the application be:
Ψ ∶ (Poin, ⋅) Ð→ (GL(5,R),×)

(L,C) z→ (L C
0 1

)

Then Ψ is an injective group morphism.

Proof. The application is clearly injective, and for all (U,D), (U ′,D′) ∈Poin, we have:

Ψ(L,C)Ψ(L′,C ′) = (L C
0 1

)(L
′ C ′

0 1
) = (LL′ C +LC ′

0 1
) = Ψ(LL′,C +LC ′) = Ψ((L,C) ⋅ (L′,C ′))

Thus, the result follows.

Thus, we can identify (Poin, ⋅) as a subgroup of (GL(5,R),×). This is what we will do from now
on, i.e.:

Poin ∶= {(L C
0 1

) , L ∈L or ∧ C ∈ R1,3} . (31)

Poin is therefore a Lie subgroup of the group GL(5,R). For example, we have:

∀A ∶= (L C
0 1

) ∈Poin, A−1 = (τ(L) −τ(L)C
0 1

) . (32)

The action of an element A ∶= (L C
0 1

) ∈Poin on an element X ∈ R1,3 is given, as in equation (27),

by:

A ●X ∶= (L C
0 1

)(X
1
) = LX +C. (33)

By equation (16) and since the exponential of any matrix is invertible, the Lie algebra gl(5,R) of
GL(5,R) is simply given by:

gl(5,R) ∶= TI4GL(5,R) = {M ∈M (4,R), ∀t ∈ R, etM ∈ GL(5,R)} =M (5,R). (34)

Thus, from the natural embedding Ψ, we deduce the following embedding.

1Do not confuse poin with the product Lie algebra lor × R4 equipped with the trivial Lie bracket [(Λ,Γ), (Λ′,Γ′)] ∶=
([Λ,Λ′],0).
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1 Action of the Poincaré group

Lemma 1.15

We have a natural embedding of Lie algebras:

ψ ∶ (poin, []) Ð→ (gl(5,R), [])

(Λ,Γ) z→ (Λ Γ
0 0

)

Proof. For all (Λ,Γ), (Λ′,Γ′) ∈ poin, we have:

[(Λ,Γ), (Λ′,Γ′)] = [ψ−1 (Λ Γ
0 0

) , ψ−1 (Λ
′ Γ′

0 0
)]

= ψ−1 ([(Λ Γ
0 0

) ,(Λ
′ Γ′

0 0
)])

= ψ−1 ([(Λ Γ
0 0

) ,(Λ
′ Γ′

0 0
)])

= ψ−1 ((Λ Γ
0 0

)(Λ
′ Γ′

0 0
) − (Λ

′ Γ′

0 0
)(Λ Γ

0 0
))

= ψ−1 (ΛΛ
′ −Λ′Λ ΛΓ′ −Λ′Γ
0 0

)

= (ΛΛ′ −Λ′Λ,ΛΓ′ −Λ′Γ)

We then identify the Lie algebra poin with its image ψ(poin) via ψ, and the bracket on ψ(poin)
is derived from the usual Lie bracket on gl(5,R). We thus have an isomorphism of Lie algebras, also
denoted ψ:

ψ ∶ (poin, []) Ð→ (ψ(poin), [])

(Λ,Γ) z→ (Λ Γ
0 0

)

Thus, we can identify (poin, []) as the Lie subalgebra of (gl(5,R), []):

poin = {(Λ Γ
0 0

) , Λ ∈ lor ∧ Γ ∈ R1,3} . (35)

with a basis (see also (29)):

Base (poin) = {(ei ⊖ 0 0
0 0

) , i ∈ {1,2,3}}⊔{(0⊖ ei 0
0 0

) , i ∈ {1,2,3}}⊔{(0 e
(4)
i

0 0
) , i ∈ {1,2,3,4}} .

(36)

We now define the connected components similar to those of the Lorentz group. The restricted
Poincaré group is the subgroup of Poin given by:

Poinn ∶= {(
Ln C
0 1

) , Ln ∈L orn ∧ C ∈ R1,3} . (37)

Let us set:

P ∶= (P̃ 0
0 1

) , T ∶= (T̃ 0
0 1

) . (38)

We have:

∀(Ln C
0 1

) ∈Poinn, ∀λ, ν ∈ {0,1}, (
Ln C
0 1

)PνTλ = (LnP̃
ν
T̃

λ
C

0 1
)
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1 Action of the Poincaré group

and therefore by equation (15):

Poin = {(LnP̃
ν
T̃

λ
C

0 1
) , λ, ν ∈ {0,1} ∧ Ln ∈L orn ∧ C ∈ R1,3} . (39)

Definition 1.16

(i) The PT-group is the subgroup K of Poin of order 4 generated by P and T, i.e.:

K ∶= {PνTλ, ν, λ ∈ {0,1}} = {I5,P,T,PT} .

(ii) For all B ∈K , the B-component of Poin is:

Poin (B) ∶= {AB, A ∈Poinn} .

Thus, for all ν, λ ∈ {0,1}:

Poin (PνTλ) = {(LnP̃
ν
T̃

λ
C

0 1
) , Ln ∈L orn ∧ C ∈ R1,3} .

These 4 components are the 4 connected components of Poin. We have the decomposition:

Poin = ⊔
B∈K

Poin (B) = ⊔
ν,λ∈{0,1}

Poin (PνTλ) . (40)

As for the Lorentz group, we have the orthochronous Poincaré subgroup defined by:

Poino ∶=Poin (I5) ⊔ Poin (P) (41)

and the subset of elements that reverse time, the antichronous part defined by:

Poina ∶=Poin (T) ⊔ Poin (PT) (42)

Thus, we have:
Poin =Poino ⊔ Poina (43)

1.6 Action on Tensors

We have the following representation of the dual of the Lie algebra of the Poincaré group.

Corollary 1.17

We have:

poin∗ = {{ M P } ∶ (Λ Γ
0 0

) z→ −1
2
Tr(MΛ) − τ(P )Γ, M ∈ A (1,3,R) ∧ P ∈ R1,3} .

Proof. This follows from the representation of lor (see lemma B.6) and from the characterization:

(R1,3)∗ = {Γz→ −τ(P )Γ, P ∈ R1,3 } .
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1 Action of the Poincaré group

Definition 1.18

(i) The elements of poin∗ are called affine torsors.

(ii) Let
µ ∶= { M P } ∈ poin∗.

(a) The matrix M(µ) ∶=M ∈ A (1,3,R) is called the moment matrix associated with
µ.

(b) The vector P (µ) ∶= P ∈ R1,3 is called the stress–energy vector associated with µ.

Let us denote Ad∗ the coadjoint representation on poin∗:

Ad∗ ∶ Poin Ð→ Aut(poin∗)
A z→ Ad∗A ∶ µz→ (Z z→ µ (A−1ZA))

(44)

Definition 1.19

The action of the group Poin on poin∗ is defined by the coadjoint representation, i.e., for
any A ∈Poin and any µ ∈ poin∗, we denote this action by:

A ● µ ∶= Ad∗A(µ).

We then have a simple description of this action on tensors.

Proposition 1.20

Let:

A ∶= (L C
0 1

) ∈Poin , { M P } ∈ poin∗.

We have:

A ● { M P } ={ LMτ(L) +Cτ(P )τ(L) −LPτ(C) LP } .

Proof. We have:

(A ● { M P })(Λ Γ
0 0

) ={ M P }(A−1 (Λ Γ
0 0

)A)

={ M P }((τ(L) −τ(L)C
0 1

)(Λ Γ
0 0

)(L C
0 1

))

={ M P }(τ(L)ΛL τ(L)(ΛC + Γ)
0 0

)

= − 1

2
Tr (Mτ(L)ΛL) − τ(P )τ(L)(ΛC + Γ)

= − 1

2
Tr [(LMτ(L) + 2Cτ(P )τ(L))Λ] + τ (LP )Γ

= − 1

2
Tr [(LMτ(L) +Cτ(P )τ(L) −LPτ(C))Λ] + τ (LP )Γ

={ LMτ(L) +Cτ(P )τ(L) −LPτ(C) LP }(Λ Γ
0 0

)

and we indeed have LMτ(L) +Cτ(P )τ(L) −LPτ(C)τ(L) ∈ A (1,3,R) because:

τ(LMτ(L) +Cτ(P )τ(L) −LPτ(C)τ(L)) = Lτ(M)τ(L) −LPτ(C) +Cτ(P )τ(L)
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1 Action of the Poincaré group

= −(LMτ(L) +Cτ(P )τ(L) −LPτ(C)τ(L)) .

We deduce from Proposition 1.20 the following corollary.
Corollary 1.21

For:

A ∶= (L C
0 1

) ∈Poin , µ ∈ poin∗,

we have:

M(A ● µ) = LM(µ)τ(L) +Cτ(P (µ))τ(L) −LP (µ)τ(C)
P (A ● µ) = LP (µ)

For:

A ∶= (LnP̃
ν
T̃

λ
C

0 1
) ∈Poin , { M P } ∈ poin∗,

we have:

M(A ● µ) = LnP̃
ν
T̃

λ
MT̃

λ
P̃

ν
τ(Ln) +Cτ(P )T̃

λ
P̃

ν
τ(Ln) −LnP̃

ν
T̃

λ
Pτ(C) (45)

P (A ● µ) = LnP̃
ν
T̃

λ
P. (46)

1.7 Second Representation of Tensors

As with the Lie algebra of the Lorentz group, to describe the Lie algebra of Poin, we can also use the
isomorphism of Lie algebras (see subsection A.4 of the appendix):

j ∶ (R3,∧) ←→ (A (3,R), [ , ])
Thus, we have:

poin = {(Λ Γ
0 0

) , Λ ∈ A (1,3,R) ∧ Γ ∈ R1,3} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 βT α
β j(w) γ
0 0 0

⎞
⎟
⎠
, β,w, γ ∈ R3 ∧ α ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (47)

Therefore, for all { M P } ∈ poin∗ and for any (Λ Γ
0 0

) ∈ lor, there are unique ℓ, g, p, β,w, γ ∈ R3 and

E,α ∈ R such that:

{ M P }(Λ Γ
0 0

) = { (0 gT

g j(ℓ)) (E
p
) }
⎛
⎜
⎝

0 βT α
β j(w) γ
0 0 0

⎞
⎟
⎠

= −1
2
Tr((0 gT

g j(ℓ))(
0 βT

β j(w))) − (E pT ) I1,3 (
α
γ
)

= ℓTw − gTβ + pTγ −Eα
We denote this last equality as:

{ ℓ g p E }
⎛
⎜
⎝

0 βT α
β j(w) γ
0 0 0

⎞
⎟
⎠
. (48)

The dual poin∗ has the following descriptions:

poin∗ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ ℓ g p E } ∶

⎛
⎜
⎝

0 βT α
β j(w) γ
0 0 0

⎞
⎟
⎠
z→ ℓTw − gTβ + pTγ −Eα, ℓ, g, p ∈ R3 ∧ E ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (49)

We have the following definitions.
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Definition 1.22

Let
µ ∶= { M P } ∶= { ℓ g p E } ∈ poin∗

with the relations:

M = (0 gT

g j(ℓ)) , P = (E
p
) .

(i) (a) The vector ℓ(µ) ∶= ℓ ∈ R3 is called the angular momentum of M associated with
µ.

(b) The vector g(µ) ∶= g ∈ R3 is the relativistic barycenter of M associated with µ.

(ii) (a) The vector p(µ) ∶= p ∈ R3 is called the linear momentum of P associated with µ.

(b) The scalar E(µ) ∶= E ∈ R is called the energy of P associated with µ.

We deduce a simple expression for the action of the PT-group K on the torsors of poin∗.

Proposition 1.23

Let { ℓ g p E } ∈ poin∗ and λ, ν ∈ {0,1}. We have:

(PνTλ) ● { ℓ g p E } = { l (−1)λ+νg (−1)νp (−1)λE }

Proof. Let µ ∶= { M P } ∶= { ℓ g p E } ∈ poin∗. As for any A ∶= (L C
0 1

) ∈Poin:

M(A ● µ) = LM(µ)τ(L) +Cτ(P (µ))τ(L) +LP (µ)τ(C)
P (A ● µ) = LP (µ)

we have:

(PνTλ) ● { ℓ g p E } = (PνTλ) ● { (0 gT

g j(ℓ)) (E
p
) }

= { P̃
ν
T̃

λ (0 gT

g j(ℓ)) T̃
λ
P̃

ν
I1,3T̃

λ
P̃

ν
I1,3 (

E
p
) }

= { ( 0 (−1)λ+νgT
(−1)λ+νg j(ℓ) ) ((−1)

λE
(−1)νp) }

= { l (−1)λ+νg (−1)νp (−1)λE }

For any { ℓ g p E } ∈ poin∗, we have:

P ● { ℓ g p E } = { ℓ −g −p E } (50)

T ● { ℓ g p E } = { ℓ −g p −E } (51)

1.8 Stabilizer of a Point

Definition 1.24

Let X ∈ R1,3 and B ∈ G . The stabilizer of X by Poin is defined as:

PoinX ∶= {A ∈Poin, A ●X =X}
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1 Action of the Poincaré group

We have simple equivalences:

A ∶= (L C
0 1

) ∈PoinX ⇐⇒ A ●X =X ⇐⇒ LX +C =X ⇐⇒ C = (I4 −L)X

We thus have the representation:

PoinX = {(
L (I4 −L)X
0 1

) , L ∈L or} . (52)

From this, we derive the following result.

Lemma 1.25

Let X ∈ R1,3. The group PoinX is a Lie subgroup of Poin with dimension 6, and its Lie
algebra is the Lie subalgebra of poin with dimension 6 defined by:

poinX = {(
Λ −ΛX
0 0

) , Λ ∈ A (1,3,R)} .

Proof. From equation (16), and since poinX is a Lie subalgebra of poin, the Lie algebra poinX of PoinX
is given by:

poinX ∶= TI4PoinX = {M ∈ poin, ∀t ∈ R, etM ∈PoinX} .

Let (Λ Γ
0 0

) ∈ poin. We have two cases.

(1) Case Λ = 0. Then we have:

(0 Γ
0 0

) ∈ poinX ⇐⇒ ∀t ∈ R, ∃Lt ∈L or, exp(t(0 Γ
0 0

)) = (Lt (I4 −Lt)X
0 1

)

⇐⇒ ∀t ∈ R, ∃Lt ∈L or, (I4 tΓ
0 1

) = (Lt (I4 −Lt)X
0 1

)

⇐⇒ ∀t ∈ R, tΓ = 0
⇐⇒ Γ = 0 = −ΛX

(2) Case Λ ≠ 0. Since etΛ ∈L or for all t ∈ R, we have:

(Λ Γ
0 0

) ∈ poinX

⇐⇒ ∀t ∈ R, ∃Lt ∈L or, exp(t(Λ Γ
0 0

)) = (Lt (I4 −Lt)X
0 1

)

⇐⇒ ∀t ∈ R, ∃Lt ∈L or, (e
tΛ U
0 1

) = (Lt (I4 −Lt)X
0 1

) ∧ ΛU = (etΛ − I4)Γ

⇐⇒ ∀t ∈ R, (etΛ − I4)Γ = (I4 − etΛ)ΛX
⇐⇒ ∀t ∈ R, Γ +ΛX = etΛ(Γ +ΛX)
⇐⇒ Γ = −ΛX

Thus, for X ∶= (t
r
) ∈ R1,3, we have:

Base (poinX) = {(
ei ⊖ 0 −(ei ⊖ 0)X
0 0

) , i ∈ {1,2,3}}⊔{(0⊖ ei −(0⊖ ei)X
0

) , i ∈ {1,2,3}}
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1 Action of the Poincaré group

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 eTi −eTi r
ei 0 −tei
0 0 0

⎞
⎟
⎠
, i ∈ {1,2,3}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 0 eTi r
0 j(ei) r ∧ ei
0 0 0

⎞
⎟
⎠
, i ∈ {1,2,3}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Definition 1.26

Let µ ∈ poin and X ∈ R1,3. The tensor with respect to X associated with µ is defined by
the restriction of µ to the Lie subalgebra poinX , i.e.:

µX ∶= µ∣poinX ∶ poinX Ð→ R

(Λ −ΛX
0 0

) z→ µ((Λ −ΛX
0 0

))

Let us define, for every X ∈ R1,3 and every M ∈ A (1,3,R):

MX ∶=M + Pτ(X) −Xτ(P ) ∈ A (1,3,R). (53)

We then have the following characterization of poin∗X .

Proposition 1.27

Let X ∈ R1,3. Then we have the following characterization:

poin∗X = {{ MX } ∶ (
Λ −ΛX
0 0

) z→ −1
2
Tr(MXΛ), M ∈ A (1,3,R)} .

Proof. Let µ ∶= { M P } ∈ poin∗ and (Λ −ΛX
0 0

) ∈ poin. We have:

µX (
Λ −ΛX
0 0

) = µ(Λ −ΛX
0 0

) = { M P }(Λ −ΛX
0 0

)

= −1
2
Tr(MΛ) + τ(P )ΛX

= −1
2
(Tr(MΛ) − 2τ(P )ΛX)

= −1
2
(Tr(MΛ) −Tr(τ(P )ΛX) −Tr(τ(τ(P )ΛX)))

= −1
2
(Tr(MΛ) −Tr(Xτ(P )Λ) +Tr(Pτ(X)Λ)

= −1
2
Tr((M + Pτ(X) −Xτ(P ))Λ)

= −1
2
Tr(MXΛ)

Thus, we have a natural surjective linear map:

poin∗ Ð→ poin∗X
µ ∶= { M P } z→ µX ∶= { MX }

(54)

From this, we derive the following definitions.
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Definition 1.28

Let µ ∶= { M P } ∈ poin and X ∈ R1,3. The Lorentz moment with respect to X associ-
ated with µ is defined as:

M(µ)X ∶=MX ∶= (
0 gTX
gX j(ℓX)

) ∶=M + Pτ(X) −Xτ(P )

(i) We call g(µ)X ∶= gX the centroid with respect to X associated with µ.

(ii) We call ℓ(µ)X ∶= ℓX the angular momentum with respect to X associated with µ.

Let X ∶= (t
r
) ∈ R1,3. We directly have:

( 0 gTX
gX j(ℓX)

) =M + Pτ(X) −Xτ(P )

= (0 gT

g j(ℓ)) + (
Et −ErT
tp −prT ) − (

Et tpT

−Er −rpT)

= ( 0 gT −ErT + tpT
g + tp −Er j(ℓ + p ∧ r) )

i.e. we have:

gX = g + tp −Er (55)
ℓX = ℓ + p ∧ r (56)

We thus deduce the following simple formula.

Proposition 1.29

Let A ∶= (L C
0 1

) ∈Poin and X ∈ R1,3. We have:

M (A ● µ)A●X = LM(µ)Xτ(L).

Proof. Let us define:

X ′ ∶=A ●X = LX +C , µ′ ∶= { M ′ P ′ } ∶=A ● µ

We have:

M ′
X′ =M ′ + P ′τ(X ′) −X ′τ(P ′)
= LMτ(L) +Cτ(P )τ(L) −LPτ(C) +LPτ(LX +C) − (LX +C)τ(LP )
= L(M + Pτ(X) −Xτ(P ))τ(L)
= LMXτ(L)

1.9 Polarization and Casimir Numbers

In this subsection, we define polarization, also called the Pauli-Lubanski pseudovector (see the
appendix for the definition of the Hodge operator), and the two Casimir numbers. Let us start with a
lemma that justifies the definition of polarization.
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Lemma 1.30

Let µ ∶= { M P } ∈ poin∗. Then the mapping:

X ∈ R1,3 z→ ∗(MX)P

is constant at ∗(M)P .

Proof. This follows from point (iii) of Proposition C.2.

This justifies the following definition.

Definition 1.31

Let µ ∶= { M P } ∈ poin∗. The polarization vector associated with µ is defined by:

W (µ) ∶=W ∶= ∗(M)P

Let us denote:

µ ∶= { M P } ∶= { ℓ g p E } , M ∶= (0 gT

g j(l)) , P ∶= (E
p
)

Then by the previous lemma:

W = ∗(M)P = (0 ℓT

ℓ j(−g))(
E
p
) = ( ℓT p

j(−g)p + ℓE) = (
ℓT p

p ∧ g + ℓE) . (57)

By point (i) of proposition C.2, the vectors P and W are orthogonal in R1,3, i.e.

τ(P )W = 0. (58)

The action of the Poincaré group on the polarization is given by the following formula.

Proposition 1.32

Let:

µ ∈ poin∗ , A ∶= (L C
0 1

) ∈Poin.

We have:
W (A ● µ) = det(L)LW (µ).

Proof. Let us denote:

P ∶= P (µ) M ∶=M(µ) W ∶=W (µ)
P ′ ∶= P (A ● µ) M ′ ∶=M (A ● µ) W ′ ∶=W (A ● µ)

By corollary 1.21, we have:

M ′ = LMτ(L) +Cτ(LP ) +LPτ(C) P ′ = LP

Thus, by the proposition C.5 from the appendix, we have:

W ′ = ∗(M ′)P ′

= ∗(LMτ(L) +Cτ(LP ) +LPτ(C))LP
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= ∗(LMτ(L))LP + ∗(Cτ(LP ) +LPτ(C))LP
= det(L)L ∗ (M)τ(L)LP + j4(C,LP )LP
= det(L)LW

Thus we have in particular:

W (P ● µ) = −PW (µ) = TW (µ) (59)
W (T ● µ) = −TW (µ) = PW (µ) (60)

We then deduce two constants invariant under the Poincaré group, which will form the basis for
two other numbers associated with µ: mass and spin.

Definition 1.33

Let µ ∶= { M P } ∈ poin∗.

(i) The second Casimir number associated with µ is defined by:

C2 ∶= C2(µ) ∶= τ(P )P.

(ii) The fourth Casimir number associated with µ is defined by:

C4 ∶= C4(µ) ∶= τ(W )W.

For:

µ ∶= { M P } ∶= { ℓ g p E } ∈ poin∗

we have:

C2 = τ(P )P = (E −pT )(E
p
) = E2 − pT p. (61)

As stated before the definition, let us show the invariance of these two numbers under the Poincaré
group.

Lemma 1.34

Let µ ∈ poin∗ and A ∈Poin. We have:

C2 (A ● µ) = C2 (µ)
C4 (A ● µ) = C4 (µ)

Proof. Let us denote:

µ ∶= { M P } , A ∶= (L C
0 1

) .

and:

P ∶= P (µ) M ∶=M(µ) W ∶=W (µ)
P ′ ∶= P (A ● µ) M ′ ∶=M (A ● µ) W ′ ∶=W (A ● µ)

We have:

C2 (A ● µ) = τ(P ′)P ′ = τ(LP )LP = τ(P )τ(L)LP = C2 (µ)
C4 (A ● µ) = τ(W ′)W ′ = τ(det(L)LW )det(L)LW = τ(W )τ(L)LW = C4 (µ)
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2 Motion of Matter in Minkowski Space

2.1 Real Matter

We start by defining the notion of real matter.2

Definition 2.1

Let µ ∈ poin∗. We say that µ is (real) matter if:

C2(µ) ≥ 0.

We denote by M at the set of (real) matter, i.e.,

M at ∶= {µ ∈ poin∗, C2(µ) ≥ 0} .

We then deduce the definition of the mass of a matter.

Definition 2.2

Let µ ∈M at.

(i) The sign of E associated with µ is defined by:

ζ(µ) ∶= ζ ∶= sign(E(µ)) ∈ {±1}.

(ii) The mass associated with µ is defined bya:

m(µ) ∶=m ∶= ζ(µ)
√
C2(µ).

aSince µ is real matter, we have C2 ≥ 0, and thus the square root exists.

For a matter:

µ ∶= { M P } ∶= { ℓ g p E } ∈M at

we have:
m(µ) = ζ(µ)

√
E2 − pT p.

Note that no constraint is given on the sign of the mass; it can be negative or positive.

Proposition 2.3

Let

A ∶= (LnP̃
ν
T̃

λ
C

0 1
) ∈Poin , µ ∈ poin∗.

We have:
ζ (A ● µ) = (−1)λζ (µ) , m (A ● µ) = (−1)λm(µ).

Proof. Let us denote:
µ ∶= { M P } ∶= { ℓ g p E } ∈M at.

We will handle two cases separately:

A ∈K , A ∈Poinn.

2The notion of pure imaginary matter can be defined by the condition C2 < 0.
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(1) Case A ∶= PνTλ. We have by proposition 1.23:

ζ ((PνTλ) ● µ) = sign (E ((PνTλ) ● µ)) = sign((−1)λE) = (−1)λζ(µ)

and thus we have:

m ((PνTλ) ● µ) = ζ ((PνTλ) ● µ)
√
C2 ((PνTλ) ● µ) = (−1)λζ(µ)

√
C2(µ) = (−1)λm(µ)

(2) Case:

A ∶= (Ln C
0 1

) ∈Poinn , Ln ∶= (
a bT

c d
) ∈L orn.

By definition, we have a = [Ln]0,0 ≥ 1. Since LT
n I1,3Ln = I1,3, we have:

1 = η0,0 = [LT
n ]0,i ηi,i [Ln]i,0 = a2 − bT b

And since:

(E(A ● µ)
p(A ● µ)) = P (A ● µ) = LnP (µ) = (

a bT

c d
)(E

p
) = (aE + b

T p
Ec + dp ) (62)

we have E(A ● µ) = aE + bT p. Thus, since E2 − pT p = C2 ≥ 0 (i.e., E2 ≥ pT p), we apply the
Cauchy-Schwarz inequality in R3:

∣bT p∣2 ≤ (bT b)(pT p) = (a2 − 1)(pT p) < (aE)2

Thus we have:
ζ(A ● µ) = sign (E(A ● µ)) = sign (aE) = sign (E) = ζ(µ).

From which we have:

m (A ● µ) = ζ (A ● µ)
√
C2 (A ● µ) = ζ(µ)

√
C2(µ) =m(µ)

Thus the sign of energy and mass are invariant under the orthochronous subgroup of the Poincaré
group Poino, and we have for the time-reversed part:

ζ (T ● µ) = −ζ(µ)
m (T ● µ) = −m(µ).

2.2 Type of Matter

We recall the notion of the type of a vector in Minkowski space.

Definition 2.4

Let X ∶= (t
r
) ∈ R1,3.

(i) We say that X is of time type if τ(X)X > 0, i.e., ∣t∣ > ∥r∥.

(ii) We say that X is of space type if τ(X)X < 0, i.e., ∣t∣ < ∥r∥.

(iii) We say that X is of isotropic type if X ≠ 0 and if τ(X)X = 0, i.e., ∣t∣ = ∥r∥.

We will classify matter according to the types of the vectors P (µ) and W (µ) associated with a
matter µ, i.e., according to the signs of C2 and C4. Let us begin with a lemma that justifies the study
of only these three cases.
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Lemma 2.5

Let µ ∈M at such that C2(µ) > 0. Then we have C4(µ) ≤ 0.

Proof. Suppose for contradiction that C4(µ) > 0, i.e., that P (µ) and W (µ) are of time type. Then by
the reversed Cauchy-Schwarz inequality in Minkowski space for time-type vectors, we have:

0 = τ(P (µ))W (µ) ≥ C2(µ)C4(µ) > 0

which is absurd. Thus, C4(µ) ≤ 0.

We then study the following two cases.

Case I. C2(µ),C4(µ) > 0 : real matter of non-zero mass with spin. We denote their set
by:

M at(I) ∶= {µ ∈M at, C2(µ) > 0 ∧ C4(µ) > 0} . (63)

Case II. C2(µ) > 0 and C4(µ) = 0 : real matter of non-zero mass without spin. We denote
their set by:

M at(II) ∶= {µ ∈M at, C2(µ) > 0 ∧ C4(µ) = 0} . (64)

We will use the following notation by abuse:

M at(I ∪ II) ∶=M at(I) ∪M at(II) = {µ ∈M at, C2(µ) > 0 ∧ C4(µ) ≥ 0} . (65)

Jean-Marie Souriau studies another case that we will not address in this text:

Case III. C2(µ),C4(µ) = 0 and P (µ),W (µ) ≠ 0 : real matter without mass and with spin.
We denote their set by:

M at(III) ∶= {µ ∈M at, C2(µ) = 0 ∧ C4(µ) = 0 ∧ P (µ), W (µ) ≠ 0} . (66)

2.3 Trajectory Associated with Matter of Non-Zero Mass

For each case, we will study the possible trajectories of real matter3.

Definition 2.6

Let µ ∈M at(I ∪ II). The universal trajectory associated with µ is defined by:

T(µ) ∶= {X ∈ R1,3, M(µ)XP (µ) = 0} .

For any subset E of R1,3 and any A ∶= (L C
0 1

) ∈Poin, we set:

A ● E ∶= {A ●X, X ∈ E } = {LX +C, X ∈ E } . (67)

Proposition 2.7

Let:

A ∶= (L C
0 1

) ∈Poin , µ ∈M at(I ∪ II).

We have:
T(A ● µ) =A ●T(µ).

3The following definitions also extend to any torsor.
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Proof. Let:
µ ∶= { M P } , µ′ ∶= { M ′ P ′ } ∶=A ● µ.

By Proposition 1.29, we have:

M ′
A●XP

′ = LMXτ(L)LP = LMXP.

Thus, we have:

T(µ′) = {X ∈ R1,3, M ′
XP

′ = 0}
=A ● {X ∈ R1,3, M ′

A●XP
′ = 0}

=A ● {X ∈ R1,3, LMXP = 0}
=A ● {X ∈ R1,3, MXP = 0}
=A ●T(µ)

In particular, we have for all µ ∈M at(I ∪ II) and all λ, ν ∈ {0,1}:

T ((PνTλ) ● µ) = PνTλ ●T(µ) = {((−1)
λt

(−1)νr) , (
t
r
) ∈ T(µ)} . (68)

We have a natural mapping:

T ∶ M at(I ∪ II) Ð→ P(R1,3)
µ z→ T(µ)

(69)

The image of this mapping is the set of all possible trajectories associated with torsors of poin in R1,3.

Definition 2.8

The set of trajectories in R1,3 is defined by:

T ∶= Im(T) ∶= {T(µ), µ ∈M at(I ∪ II)} .

2.4 Case of Real Matter with Non-Zero Mass

In this subsection, we study real matter with non-zero mass. Let’s start with a simple lemma that
justifies dividing by m and E.

Lemma 2.9

Let µ ∈M at(I ∪ II). Then m(µ) and E(µ) are non-zero.

Proof. We have:
m(µ)2 = E(µ)2 − p(µ)T p(µ) = C2(µ) > 0

thus E(µ)2,m(µ)2 > 0 i.e. E(µ),m(µ) ≠ 0.

Definition 2.10

Let µ ∈M at(I ∪ II).
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(i) The spin associated with µ is defined by:

s(µ) ∶= s ∶=
¿
ÁÁÀ−C4(µ)

C2(µ)
.

(ii) The unit energy-momentum four-vector associated with µ is the vector in R1,3

defined by:

I(µ) ∶= I ∶= 1

m(µ)P (µ)

(iii) The velocity vector associated with µ is the vector in R3 defined by:

v(µ) ∶= v ∶= 1

E(µ)p(µ).

Thus, for every µ ∈M at(I ∪ II):

s(µ) ≠ 0 ⇐⇒ µ ∈M at(I). (70)

We can thus define an additional vector in the case of matter from M at(I).

Definition 2.11: Polarization

Let µ ∈ M at(I). The unit polarization vector associated with µ is the vector in R1,3

defined by:

J(µ) ∶= J ∶= 1

s(µ)m(µ)W (µ).

From this, we deduce the action of the Poincaré group on these elements.

Proposition 2.12

Let

A ∶= (LnP̃
ν
T̃

λ
C

0 1
) ∈Poin.

(i) For every µ ∈M at(I ∪ II), we have:

s(A ● µ) = s(µ)

I (A ● µ) = LnP̃
λ+ν

I(µ)

(ii) For every µ ∈M at(I), we have:

J (A ● µ) = LnT̃
λ+ν

J(µ).

Proof. By the invariance of the Casimir numbers under the Poincaré group (see lemma 1.34), we have:

s(A ● µ) =
¿
ÁÁÀ−C4(A ● µ)

C2(A ● µ)
=
¿
ÁÁÀ−C4(µ)

C2(µ)
= s(µ).

We have with L ∶= LnP̃
ν
P̃

λ
:

I (A ● µ) = P (A ● µ)
m (A ● µ) =

LP (µ)
(−1)λm(µ) = (−1)

λLI(µ) = LnP̃
λ+ν

I(µ)
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J (A ● µ) = W (A ● µ)
s (A ● µ)m (A ● µ) =

det(L)LW (µ)
s(µ)(−1)λm(µ) = LnT̃

λ+ν
J(µ)

Thus, we have:

I(T ● µ) = PI(µ) J(T ● µ) = TJ(µ) (71)
I(P ● µ) = PI(µ) J(P ● µ) = TJ(µ) (72)

There is no simple formula for v (A ● µ) in terms of v (µ); we only have:

v ((PνTλ) ● µ) =
p ((PνTλ) ● µ)
E ((PνTλ) ● µ)

= (−1)
νp (µ)

(−1)λE (µ) = (−1)
λ+νv(ν) (73)

We also have the usual formula:

E = sign(E)2E
√
C2√

E − pT p
= m√

1 − vT v
(74)

Theorem 2.13

Let µ ∈M at(I ∪ II). Let’s set:

(i) (a) We have τ(I)I = 1.
(b) Suppose that µ ∈M at(I). We have:

τ(I)I = 1 , τ(J)J = −1 , τ(I)J = 0.

(ii) The trajectory associated with µ is an affine line parallel to I given by:

T(µ) = MP

C1
+VectR(I) = {

MP

C1
+ sI, s ∈ R} .

(iii) For all X,X ′ ∈ T(µ), we have MX =MX′ .

(a) Suppose that µ ∈M at(I). For all X ∈ T(µ), we have:

M = sj4(I, J) +m(Xτ(I) − Iτ(X)).

(b) Suppose that µ ∈M at(II). For all X ∈ T(µ), we have MX = 0 and:

M =m(Xτ(I) − Iτ(X)).

Proof. (i) It suffices to address point (b). In this case, we have:

τ(I)I = 1

m2
τ(P )P = C2

m2
= 1

τ(I)J = 1

sm2
τ(P )W = 1

sm2
(−E pT )( lT p

p ∧ g + lE) =
1

sm2
(−ElT p +EpT l) = 0

τ(J)J = 1

s2m2
τ(W )W = 1

−C4
C4 = −1

(ii) We have:

X ∈ T(µ) ⇐⇒ MXP = 0
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⇐⇒ (M + Pτ(X) −Xτ(P ))P = 0
⇐⇒ MP + Pτ(X)P −C1X = 0
⇐⇒ MP + Pτ(P )X −C1X = 0

⇐⇒ (E ) ∶ (I4 −
Pτ(P )
C1

)X = MP

C1
.

Let N ∶= I4 − Pτ(P )/C1. We have:

N2 = (I4 −
Pτ(P )
C1

)
2

= I4 − 2
Pτ(P )
C1

+ Pτ(P )Pτ(P )
C2
1

= N.

Thus, N is a vector projector and its image is:

Im(N) = Ker(N − I4) = Ker(Pτ(P )).

Therefore, Im(N) has dimension 3 (since Pτ(P ) is of rank 1). We have thus shown that T(µ) is
an affine line.

It is easy to see that P is a solution of the homogeneous equation (E0) associated with (E )
because:

(I4 −
Pτ(P )
C1

)P = P − PC1

C1
= 0.

Since:
τ(P )MP = τ(τ(P )MP ) = −τ(P )MP

i.e. τ(P )MP = 0, we have:

(I4 −
Pτ(P )
C1

)MP

C1
= MP

C1
− Pτ(P )MP

C2
1

= MP

C1
.

Thus the result follows.

(iii) Let X,X ′ ∈ T(µ). There exist u,u′ ∈ R such that:

X = MP

C1
+ uI , X ′ = MP

C1
+ u′I.

Thus, we have:
MX −MX′ = (u − u′)Pτ(P ) − (u − u′)Pτ(P ) = 0.

(iv) (a) Since MX is independent of X ∈ T(µ). Let us denote for X0 ∶=MP /C1 ∈ T :

Ω ∶= 1

s
MX0 .

We have Ω ∈ A (1,3,R) and:

ΩI = 1

sm
MX0P = 0

∗(Ω)I = 1

sm
∗ (MX0)P =

1

sm
W = J

Thus, by point (iii) of proposition C.6:

Ω = j4(I, J)

Therefore, we have:

M =MX0 + τ(P ) − Pτ(X0) = sj4(I, J) +m(X0τ(I) − Iτ(X0)).
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(b) Let us denote for X0 ∶=MP /C1 ∈ T :
Ω ∶=MX0 .

We have Ω ∈ A (1,3,R) and:

ΩI = 1

m
MX0P = 0

∗(Ω)I = 1

m
∗ (MX0)P =

1

m
W = 0

Thus, by point (iii) of proposition C.6:

MX0 = Ω = j4(I,0) = 0.

By point (iii), MX is independent of X ∈ T(µ) i.e. for all X ∈ T(µ), we have MX =MX0 = 0.
Thus we have:

M =MX0 +X0τ(P ) − Pτ(X0) =m(X0τ(I) − Iτ(X0)).

2.5 Interfaces with Action of the Poincaré Group

We conclude this text with an application within the framework of an interface in R1,3 where an action
of the Poincaré group occurs.

We have shown in proposition 2.7 that for A ∈Poin and µ ∈M at(I∪II), the trajectory transforms
by the simple formula:

T(A ● µ) =A ●T(µ).

Let us begin with the definition of an interface.

Definition 2.14

An interface in R1,3 is an affine hyperplane H in R1,3 equipped with:

(i) a normal vector n(H) ∶= n ∈ R1,3 and a point H ∶= H(H) ∈ H such that τ(n)n = −1 (i.e., n
is of spatial type), and:

H ∶= {X ∈ R1,3, nT (X −H) = 0} ;

(ii) a matrix A(H) ∶=A ∈Poin;

(iii) an observer O(H) ∶= O whose world line L (O) never intersects H.

28 David Pigeon - Mathématiques



2 Motion of Matter in Minkowski Space

We will denote:
H(n,H,A,O) ∶= H.

The hyperplane H divides R1,3 into two half-spaces. The world line of the observer O(H) is in one
of the two half-hyper-spaces. We denote H+ as the half-space where it is located and H− as the other.
We can choose two directions for n, the normal vector to H, and we assume that H + n ∈ H+.

Lemma 2.15

Let a trajectory T ∶=X0 +Vect(U) be such that U +H ∉ H, i.e., nTU ≠ 0. Then we have:

T ∩H = {X0 +
nT (X0 −H)

nTU
U} .

Proof. For all u ∈ R, we have:

X0 + uU ∈ H ⇐⇒ 0 = nT (X0 + uU −H) = nT (X0 −H) + unTU ⇐⇒ u = n
T (X0 −H)
nTU

.

In particular, by theorem 2.13, for µ ∈M at(I ∪ II), we have:

T(µ) = MP

C1
+VectR(I)

and thus:

T(µ) ∩H =
⎧⎪⎪⎨⎪⎪⎩
X(H, µ) ∶= MP

C1
+
nT (MP

C1
−H)

nT I
I

⎫⎪⎪⎬⎪⎪⎭
(75)

We can make the following remarks and simplifications:

● Without loss of generality, by changing the observer whose world line is in H+, we can assume that
H is stationary over time relative to the observer O;

● By applying a Poincaré transformation to the reference frame, we can always reduce to the case
where the hypersurface is such that n ∶= e(4)1 and H ∶= 0. In this frame, we thus have:

H = {X ∈ R1,3, [X]1 = 0} . (76)

What happens when a particle coming from the H+ side passes through the interface? We can
consider two cases:

(A) The reference frame is the same on both sides. In this case, upon passing through the interface
at the point X(H, µ), the particle finds itself at the point A ●X(H, µ) with a direction I(A ● µ).
Thus, the particle is teleported.

(B) The reference frame changes so that the trajectory of the matter remains continuous. In this case,
the reference frame changes on the other side of the interface so that the particle does not change
trajectory. The point X(H, µ) is identified by A ●X(H, µ) using the reference frame on the H−
side, and all points X on the H− side are identified for the observer O by A ●X.

Here are two examples in case (B) of an interface where A ∶= T or A ∶= PT:
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We can then see that in both cases, the mass is reversed. To take up Jean-Pierre Petit’s idea of
spacetime covering, we will place ourselves in the case of a type (B) interface. The parts H+ and H−
are then seen as two half-spaces, one above the other:

30 David Pigeon - Mathématiques



A Skew-symmetric matrix

A Skew-symmetric matrix

A.1 The space R3

Let us denote the canonical basis of R3:

Base (R3) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
e1 ∶=

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
, e2 ∶=

⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
, e3 ∶=

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (77)

Definition A.1

We equip R3 with the scalar product defined for all u, v ∈ R3 by uT v where ●T is the transpose
of the matrices.
Let u, v ∈ R3. We say that u and v are orthogonal if uT v = 0. We then write u ⊥ v.

For all u ∶= ∑3
i=1 u

iei, v ∶= ∑3
i=1 v

iei ∈ R3, we have:

uT v = u1v1 + u2v2 + u3v3 (78)

uTu = (u1)2 + (u2)2 + (u3)2 ≥ 0 (79)

We define the norm of u by:
∣∣u∣∣ =

√
uTu. (80)

From this, we deduce the characterization of the dual of R3.

Proposition A.2

We have:
(R3)∗ = {v z→ uT v, u ∈ R3} .

Proof. Let us prove the result by double inclusion. Define ϕu ∶ v z→ uT v for all u ∈ R3. Clearly,
ϕu ∈ (R3)∗ for all u ∈ R3.

Let ϕ ∈ (R3)∗. Define u ∶= ∑3
i=1 ϕ (ei) ei. For all j ∈ {1,2,3}, we have:

ϕu (ej) = uT ej = (
3

∑
i=1

ϕ (ei) ei)
T

ej =
3

∑
i=1

ϕ (ei) eTi ej =
3

∑
i=1

ϕ (ei) δi,j = ϕ (ej)

i.e. ϕ = ϕu with δi,j being the Kronecker symbol equal to 1 if i = j and 0 otherwise. Hence the
result.

A.2 Volume form and cross product in R3

Definition A.3

The volume form of R3 is defined as the alternating trilinear map:

Vol ∶ (R3)3 Ð→ R
(u, v,w) z→ Vol (u, v,w) ∶= det (u, v,w)

(81)

We have by expanding the determinant along the third column:

Vol (u, v,w) = det (u, v,w)

= w1 ∣u
2 v2

u3 v3
∣ −w2 ∣u

1 v1

u3 v3
∣ +w3 ∣u

1 v1

u2 v2
∣
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= w1 (u2v3 − u3v2) +w2 (u3v1 − u1v3) +w3 (u1v2 − u2v1)

= (w1 w2 w3)
⎛
⎜
⎝

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

⎞
⎟
⎠

Hence the following definition.

Definition A.4

The cross product of two vectors u ∶= ∑3
i=1 u

iei, v ∶= ∑3
i=1 v

iei ∈ R3 is defined by:

u ∧ v ∶=
⎛
⎜
⎝

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

⎞
⎟
⎠
.

Thus for all u, v,w ∈ R3:

(u ∧ v)T w = wT (u ∧ v) = det (u, v,w) = Vol (u, v,w) . (82)

For example, we have:
e1 ∧ e2 = e3 , e1 ∧ e3 = −e2 , (83)

We also denote by ∧ the bilinear map:

∧ ∶ (R3)2 Ð→ R3

(u, v) z→ u ∧ v
(84)

We have the following usual properties.

Proposition A.5

Let u, v,w ∈ R3.

(i) We have u ∧ u = 0.

(ii) (Antisymmetry) We have u ∧ v = −v ∧ u.

(iii) (Double cross product) We have:

u ∧ (v ∧w) = (uTw) .v − (uT v) .w , (u ∧ v) ∧w = (uTw) .v − (vTw) .u.

(iv) (Jacobi identity) We have:

u ∧ (v ∧w) +w ∧ (u ∧ v) + v ∧ (w ∧ u) = 0.

Proof. (i) We have:

u ∧ u =
⎛
⎜
⎝

u1

u2

u3

⎞
⎟
⎠
∧
⎛
⎜
⎝

u1

u2

u3

⎞
⎟
⎠
=
⎛
⎜
⎝

u2u3 − u3u2
u3u1 − u1u3
u1u2 − u2u1

⎞
⎟
⎠
= 0.

(ii) We have:

u ∧ v =
⎛
⎜
⎝

u1

u2

u3

⎞
⎟
⎠
∧
⎛
⎜
⎝

v1

v2

v3

⎞
⎟
⎠
=
⎛
⎜
⎝

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

⎞
⎟
⎠
=
⎛
⎜
⎝

v2u3 − v3u2
v3u1 − v1u3
v1u2 − v2u1

⎞
⎟
⎠
= −v ∧ u.
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(iii) We have:

(u ∧ v) ∧w =
⎛
⎜
⎝

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

⎞
⎟
⎠
∧
⎛
⎜
⎝

w1

w2

w3

⎞
⎟
⎠
=
⎛
⎜
⎝

(u3v1 − u1v3)w3 − (u1v2 − u2v1)w2

(u1v2 − u2v1)w1 − (u2v3 − u3v2)w3

(u2v3 − u3v2)w2 − (u3v1 − u1v3)w1

⎞
⎟
⎠

=
⎛
⎜
⎝

(u1w1 + u2w2 + u3w3) v1 − (v1w1 + v2w2 + v3w3)u1
(u1w1 + u2w2 + u3w3) v2 − (v1w1 + v2w2 + v3w3)u2
(u1w1 + u2w2 + u3w3) v3 − (v1w1 + v2w2 + v3w3)u3

⎞
⎟
⎠

= (u1w1 + u2w2 + u3w3)
⎛
⎜
⎝

v1

v2

v3

⎞
⎟
⎠
− (v1w1 + v2w2 + v3w3)

⎛
⎜
⎝

u1

u2

u3

⎞
⎟
⎠

= (uTw) .v − (vTw) .u

and we have:

u ∧ (v ∧w) = −(v ∧w) ∧ u = −((uT v) .w − (uTw) .v) = (uTw) .v − (uT v) .w.

(iv) From point (iii) we have:

u ∧ (v ∧w) +w ∧ (u ∧ v) + v ∧ (w ∧ u)
= ((uTw) .v − (uT v) .w) + ((wT v) .u − (wTu) .v) + ((vTu) .w − (vTw) .u)
= 0

It forms a Lie bracket on R3.

Corollary A.6

The pair (R3,∧) is a 3-dimensional Lie algebra.

A.3 The Space A (3,R)
Definition A.7

We say that a matrix A ∈M (3,R) is antisymmetric if:

AT = −A

We denote A (3,R) as the vector space of antisymmetric matrices of size 3:

A (3,R) ∶= {A ∈M (3,R) , AT = −A} .

Let us define:
∀A,B ∈ A (3,R) , [A,B] ∶= AB −BA. (85)

We then have the following property.
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Proposition A.8

The pair (A (3,R) , []) is a 3-dimensional Lie algebra with the canonical basis:

Base (A (3,R)) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (86)

Proof. The map (A,B) ∈ A (3,R)2 z→ [A,B] is clearly bilinear, and [A,A] = 0 for all A ∈ A (3,R).
For all A,B ∈ A (3,R), we have:

[A,B]T = (AB −BA)T = BTAT −ATBT = −BA +AB = −[A,B]

i.e. [A,B] ∈ A (3,R). Furthermore, we have the Jacobi identity for all A,B,C ∈ A (3,R):

[A, [B,C]] + [B, [C,A]] + [C, [A,B]]
= (A (BC −CB) − (BC −CB)A) + (B (CA −AC) − (CA −AC)B) + (C (AB −BA) − (AB −BA)C)
= 0

Let:

A ∶=
⎛
⎜
⎝

a b c
d e f
g h i

⎞
⎟
⎠
∈M (3,R) .

We have:

AT = −A ⇐⇒
⎛
⎜
⎝

a d g
b e h
c f i

⎞
⎟
⎠
=
⎛
⎜
⎝

−a −b −c
−d −e −f
−g −h −i

⎞
⎟
⎠

⇐⇒ a = e = i = 0 ∧ b = −d ∧ c = −g ∧ f = −h

⇐⇒ A =
⎛
⎜
⎝

0 −d c
d 0 −h
−c h 0

⎞
⎟
⎠
= h
⎛
⎜
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎟
⎠
+ c
⎛
⎜
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎟
⎠
+ d
⎛
⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟
⎠
.

Hence the result.

A.4 The Application j

Let the natural application be defined as:

j ∶ R3 Ð→ A (3,R)
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
z→

⎛
⎜
⎝

0 −z y
z 0 −x
−y x 0

⎞
⎟
⎠

(87)

Proposition A.9

The application j induces a Lie algebra isomorphism:

j ∶ (R3,∧) Ð→ (A (3,R) , []) .

Proof. This application is clearly linear and injective. And since dimA (3,R) = dimR3 = 3, it is an
isomorphism of vector spaces.

For all u ∶= ∑3
i=1 u

iei, v ∶= ∑3
i=1 v

iei ∈ R3, we have:

[j (u) , j (v)] = j (u) j (v) − j (v) j (u)
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=
⎛
⎜
⎝

0 −u3 u2

u3 0 −u1
−u2 u1 0

⎞
⎟
⎠

⎛
⎜
⎝

0 −v3 v2

v3 0 −v1
−v2 v1 0

⎞
⎟
⎠
−
⎛
⎜
⎝

0 −v3 v2

v3 0 −v1
−v2 v1 0

⎞
⎟
⎠

⎛
⎜
⎝

0 −u3 u2

u3 0 −u1
−u2 u1 0

⎞
⎟
⎠

=
⎛
⎜
⎝

0 v1u2 − u1v2 v1u3 − v3u1
u1v2 − u2v1 0 v2u3 − v3u2
u1v3 − u3v1 u2v3 − u3v2 0

⎞
⎟
⎠

= j (u ∧ v)

We recover the basis of proposition A.8:

Base (A (3,R)) = j (Base (R3)) = {j (ei) , i ∈ {1,2,3}} . (88)

We then have the following properties.

Lemma A.10

Let u, v ∈ R3.

(i) We have u ∧ v = j (u) v

(ii) We have j (u)T = j (−u) = −j (u)

(iii) We have vuT − vTuI3 = j (u) j (v)

(iv) We have j (u ∧ v) = [j (u) , j (v)] = j (u) j (v) − j (v) j (u) = vuT − uvT .

(v) Let d ∈M (3,R). We have:
dj (u)dT = j (Cof (d)u)

with Cof (d) being the cofactor matrix of d.

Proof. (i) We have:

j (u) v =
⎛
⎜
⎝

0 −u3 u2

u3 0 −u1
−u2 u1 0

⎞
⎟
⎠

⎛
⎜
⎝

v1
v2
v3

⎞
⎟
⎠
=
⎛
⎜
⎝

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

⎞
⎟
⎠
= u ∧ v.

(ii) We have:

j (u)T =
⎛
⎜
⎝

0 −u3 u2

u3 0 −u1
−u2 u1 0

⎞
⎟
⎠

T

=
⎛
⎜
⎝

0 u3 −u2
−u3 0 u1

u2 −u1 0

⎞
⎟
⎠
= j (−u) = −j (u) .

(iii) We have:

vuT − vTuI3 =
⎛
⎜
⎝

v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3

⎞
⎟
⎠
− (v1u1 + v2u2 + v2u2) I3

=
⎛
⎜
⎝

−v2u2 − v3u3 v1u2 v1u3

u1v2 −v1u1 − v3u3 v2u3

u1v3 u2v3 −v1u1 − v2u2

⎞
⎟
⎠

j (u) j (v) =
⎛
⎜
⎝

0 −u3 u2

u3 0 −u1
−u2 u1 0

⎞
⎟
⎠

⎛
⎜
⎝

0 −v3 v2

v3 0 −v1
−v2 v1 0

⎞
⎟
⎠
=
⎛
⎜
⎝

−v2u2 − v3u3 v1u2 v1u3

u1v2 −v1u1 − v3u3 v2u3

u1v3 u2v3 −v1u1 − v2u2

⎞
⎟
⎠
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(iv) This follows from the fact that j is a Lie algebra morphism and from point (iii).

(v) Let d ∈M (3,R) written in rows:

d ∶=
⎛
⎜
⎝

d11 d12 d13
d21 d22 d23
d31 d32 d33

⎞
⎟
⎠
∶=
⎛
⎜
⎝

LT
1

LT
2

LT
3

⎞
⎟
⎠
.

Since the cofactor matrix of d is given by:

Cof (d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣d22 d23
d32 d33

∣ − ∣d21 d23
d31 d33

∣ ∣d21 d22
d31 d32

∣

− ∣d12 d13
d32 d33

∣ ∣d11 d13
d31 d33

∣ − ∣d11 d12
d31 d32

∣

∣d12 d13
d22 d23

∣ − ∣d11 d13
d21 d23

∣ ∣d11 d12
d21 d22

∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜⎜
⎝

(L2 ∧L3)T

(L3 ∧L1)T

(L1 ∧L2)T

⎞
⎟⎟
⎠
.

For all i ∈ {1,2,3}, we have:

dj (ei)dT =
⎛
⎜
⎝

LT
1

LT
2

LT
3

⎞
⎟
⎠
j (ei) (L1 L2 L3) =

⎛
⎜
⎝

LT
1

LT
2

LT
3

⎞
⎟
⎠
(ei ∧L1 ei ∧L2 ei ∧L3)

=
⎛
⎜
⎝

[L1, ei, L1] [L1, ei, L2] [L1, ei, L3]
[L2, ei, L1] [L2, ei, L2] [L2, ei, L3]
[L3, ei, L1] [L3, ei, L2] [L3, ei, L3]

⎞
⎟
⎠
=
⎛
⎜
⎝

0 −[L2, ei, L1] [L1, ei, L3]
[L2, ei, L1] 0 −[L3, ei, L2]
−[L3, ei, L1] [L3, ei, L2] 0

⎞
⎟
⎠

= j
⎛
⎜
⎝

[L3, ei, L2]
[L1, ei, L3]
[L2, ei, L1]

⎞
⎟
⎠
= j
⎛
⎜⎜
⎝

(L2 ∧L3)T ei
(L3 ∧L1)T ei
(L1 ∧L2)T ei

⎞
⎟⎟
⎠
= j (Cof (d) ei)

Thus, by the linearity of j:

dj (u)dT =
3

∑
i=1

uidj (ei)dT =
3

∑
i=1

uij (Cof (d) ei) = j (
3

∑
i=1

uiCof (d) ei) = j (Cof (d)u) .

We thus deduce a representation of the dual of A (3,R).

Corollary A.11

We have:
A (3,R)∗ = {N z→ −1

2
Tr (MN) , M ∈ A (3,R)} .

Proof. By the representation (A.2), the isomorphism j−1 induces an isomorphism on the duals:

(j−1)∗ ∶ (R3)∗ Ð→ A (3,R)∗
ϕu ∶ v Ð→ uT v z→ ψj(u) ∶ j (v) Ð→ ϕu (v) = uT v

.

By point (iii) of lemma A.10, for all M ∶= j (u) ,N ∶= j (v) ∈ A (3,R) (with u, v ∈ R3), we have:

ψM (N) = ψj(u) (j (v)) = uT v = −
1

2
Tr (j (u) j (v)) = −1

2
Tr (MN) .

Hence the result.

For all i, j ∈ {1,2,3}:
ψj(ei) (j (ej)) = ϕei (ej) = e

T
i ej = δi,j . (89)
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B Skew-symmetric matrix in Minkowski space

B.1 The Applications τ

We define:

I1,0 ∶= 1 , I1,3 ∶=
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

(90)

Definition B.1

For any matrix A ∈M (1 + k,1 + l,R) with k, l ∈ {0,3}, we denote:

τ (A) ∶= I1,lAT I1,k.

For example, we have:

● for any real number x ∈ R:
τ (x) = I1,0xT I1,0 = x; (91)

● for any matrix M ∶= (a bT

c d
) ∈M (1 + 3,R):

τ (M) = I1,3MT I1,3 = (
a −cT
−b dT

) ; (92)

● for any column matrix X ∶= (t
r
) ∈M (1 + 3,1,R):

τ (X) = I1,0XT I1,3 =XT I1,3 = (t −rT ) ; (93)

● for any row matrix Q ∶= (t rT ) ∈M (1,1 + 3,R):

τ (Q) = I1,3QT I1,0 = I1,3QT = ( t−r) . (94)

Lemma B.2

Let A ∈M (1 + k,1 + l,R) and B ∈M (1 + l,1 + j,R) with j, k, l ∈ {0,3}.

(i) We have τ (τ (A)) = A.

(ii) We have τ (AB) = τ (B) τ (A).

Proof. (i) We have:

τ (τ (A)) = τ (I1,lAT I1,k) = I1,k (I1,lAT I1,k)
T
I1,l = I1,k (I1,kAI1,l) I1,l = A.

(ii) We have:
τ (AB) = I1,j (AB)T I1,k = (I1,jBT I1,l) (I1,lAT I1,k) = τ (B) τ (A) .

B.2 The space A (1,3,R)
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Definition B.3

An antisymmetric matrix of Minkowski space is a matrix M ∈M (4,R) such that :

τ (M) = −M.

We denote their set as:

A (1,3,R) ∶= {M ∈M (4,R) , τ (M) = −M}.

We have the following simple representation.

Proposition B.4

We have the representation:

A (1,3,R) = {(0 aT

a j (b)) , a, b ∈ R
3}

Thus, A (1,3,R) is a vector subspace of M (4,R) of dimension 6 with the basis:

Base (A (1,3,R)) = {(0 eTi
ei 0

) , i ∈ {1,2,3}}⊔{(0 0
0 j (ei)

) , i ∈ {1,2,3}} .

Proof. Let M ∶= (e c
a d
) ∈M (1 + 3,R). We have:

M ∈ A (1,3,R) ⇐⇒ τ (M) = −M ⇐⇒ ( e −aT
−cT dT

) = (−e −c
−a −d)

⇐⇒ e = 0 ∧ c = aT ∧ d ∶= j (b) ∈ A (3,R) ⇐⇒ M = (0 aT

a j (b))

⇐⇒ M =
3

∑
i=1

ai (0 eTi
ei 0

) +
3

∑
i=1

bi (0 0
0 j (ei)

)

with a ∶= ∑3
i=1 a

iei and b ∶= ∑3
i=1 b

iei.

Let us define the linear application ⊖:

⊖ ∶ (R3)2 Ð→ A (1,3,R)

(a, b) z→ a⊖ b ∶= (0 aT

a j (b))

(95)

This is an isomorphism because it is clearly injective. We thus have:

A (1,3,R) = {a⊖ b, a, b ∈ R3} . (96)

and:
Base (A (1,3,R)) = {ei ⊖ 0, i ∈ {1,2,3}}⊔{0⊖ ei, i ∈ {1,2,3}} . (97)

We equip A (1,3,R) with the natural Lie bracket on matrices as for A (3,R) (see (85) and propo-
sition A.8):

∀A,B ∈ A (1,3,R) , [A,B] ∶= AB −BA. (98)

Lemma B.5

The bracket makes the pair (A (1,3,R) , [ , ]) a Lie algebra.
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Proof. Let A,B,C ∈ A (1,3,R). We have [A,A] = 0 and:

τ ([A,B]) = τ (AB) − τ (BA) = τ (B) τ (A) − τ (A) τ (B) = BA −AB = −[A,B]

i.e., [A,B] ∈ A (1,3,R). Thus, the map (A,B) z→ [A,B] is a bilinear map from A (1,3,R)2 to
A (1,3,R). Furthermore, it satisfies the Jacobi identity, as in A (3,R) (see the proof of proposi-
tion A.8).

We have the characterization of the dual of A (1,3,R).

Lemma B.6

We have:
A (1,3,R)∗ = {Λz→ −1

2
Tr (MΛ) , M ∈ A (1,3,R)} .

Proof. We prove by double inclusion:

(∗) ∶ ((R3)2)
∗

= {Φ(a,b) ∶ (a′, b′) Ð→ −aTa′ + bT b′, a, b ∈ R3} .

Clearly, Φ(a,b) ∈ ((R3)2)
∗

for all a, b ∈ R3.

Let Φ ∈ ((R3)2)
∗

. Define:

a ∶= −
3

∑
k=1

Φ (ek,0) ek , b ∶=
3

∑
l=1

Φ (0, el) el.

For all i, j ∈ {1,2,3}:

Φ(a,b) (ei, ej) = −aT ei + bT ej = −(−
3

∑
k=1

Φ (ek,0) ek)
T

ei + (
3

∑
l=1

Φ (0, el) el)
T

ej

=
3

∑
k=1

Φ (ek,0) δk,i +
3

∑
l=1

Φ (0, el) δl,j = Φ (ei,0) +Φ (0, ej) = Φ (ei, ej)

i.e. Φ = Φ(a,b) Thus, the equality (∗) holds. Therefore, the isomorphism ⊖−1 induces an isomorphism
on the duals:

(⊖−1)∗ ∶ ((R3)2)
∗

Ð→ A (1,3,R)∗

Φ(a,b) ∶ (a′, b′) Ð→ −aTa′ + bT b′ z→ Ψa⊖b ∶ a′ ⊖ b′ Ð→ Φ(a,b) (a′, b′) = −aTa′ + bT b′
.

Let M ∶= a⊖ b,N ∶= a′ ⊖ b′ ∈ A (1,3,R) (with a, b, a′, b′ ∈ R3). Since:

−1
2
Tr (MN) = −1

2
Tr((0 aT

a j (b))(
0 (a′)T
a′ j (b′))) = −

1

2
Tr(( a

Ta′ aT j (b′)
j (b)a a (a′)T + j (b) j (b′)))

= −1
2
Tr(( a

Ta′ aT j (b′)
j (b)a a (a′)T + (b′)T b − bT b′I3

))

= −1
2
(2aTa′ − 2bT b′) = −aTa′ + bT b′

we have:

ΨM (N) = Ψa⊖b (a′ ⊖ b′) = −aTa′ + bT b′ = −
1

2
Tr ((a⊖ b) (a′ ⊖ b′)) = −1

2
Tr (MN) .

Hence the result.

We then have for all i, j ∈ {1,2,3}:

Ψei⊖0 (ej ⊖ 0) = −δi,j (99)
Ψ0⊖ei (0⊖ ej) = δi,j (100)
Ψ0⊖ei (ej ⊖ 0) = Ψei⊖0 (0⊖ ej) = 0 (101)
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B.3 Cross product in R1,3

Definition B.7

The volume form of R1,3 is defined as the quadrilinear map:

Vol4 ∶ (R1,3)3 Ð→ R
(X1,X2,X3,X4) z→ Vol4 (X1,X2,X3,X4) ∶= det4 (X1,X2,X3,X4)

For all Xi ∶= (
t1
ri
) ∈ R1,3 (i ∈ {1,2,3,4}), by expanding the determinant along the first row:

Vol4 (X1,X2,X3,X4) = det 4 (X1,X2,X3,X4) = ∣
t1 t2 t3 t4
r1 r2 r3 r4

∣

= t1 det (r2, r3, r4) − t2 det (r1, r3, r4) + t3 det (r1, r2, r4) − t4 det (r1, r2, r3)
= t4rT1 j (r2)

T r3 − rT4 (t3j (r2) r1 + t2j (r1) r3 − t1j (r2) r3)

= (t4 −rT4 )(
rT1 j (r2)

T r3
t3j (r2) r1 + t2j (r1) r3 − t1j (r2) r3

)

= (t4 −rT4 )(
0 rT1 j (r2)

T

j (r2) r1 j (r1t2 − r2t1)
)(t3
r3
)

= τ (X4)( 0 rT1 j (r2)
T

j (r2) r1 j (r1t2 − r2t1)
)X3

Hence the following definitions4.

Definition B.8

(i) The application j4 is defined as:

j4 ∶ (R1,3)2 Ð→ A (1,3,R)

((t1
r1
) ,(t2

r2
)) z→ ( 0 rT1 j (r2)

T

j (r2) r1 j (r1t2 − r2t1)
)

(ii) Let X1,X2,X3 ∈ R1,3. The cross product of X1, X2, and X3 in R1,3 is defined as:

X1 ∧X2 ∧X3 ∶= j4 (X1,X2)X3.

We thus obtain a formula similar to (82) for R3. For all X1,X2,X3,X4 ∈ R1,3, we have:

Vol4 (X1,X2,X3,X4) = τ (X4) (X1 ∧X2 ∧X3) = τ (X1 ∧X2 ∧X3)X4. (102)

Thus, for all (t1
r1
) ,(t2

r2
) ∈ R1,3:

j4 ((
t1
r1
) ,(t2

r2
)) = ( 0 (r2 ∧ r1)T

r2 ∧ r1 j (r1t2 − r2t1)
) (103)

Since:

j4 (X1,X2) = ( 0 rT1 j (r2)
T

j (r2) r1 j (r1t2 − r2t1)
) = −( 0 rT2 j (r1)

T

j (r1) r2 j (r2t1 − r1t2)
) = −j4 (X2,X1)

4In Chapter 13 of [17], the volume is defined by Vol4 (X1,X2,X3,X4) = ∣
r1 r2 r3 r4
t1 t2 t3 t4

∣ which explains the "−" sign

between the two definitions of j4.
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we have:

X1 ∧X2 ∧X3 = j4 (X1,X2)X3 = −j4 (X2,X1)X3 = −X2 ∧X1 ∧X3 (104)

The application j4 is a bilinear antisymmetric map and is non-injective because for allX1,X2 ∈ R1,3:

j4 (X1,X2) = 0 ⇐⇒ r2 ∧ r1 = 0 ∧ r1t2 − r2t1 = 0 ⇐⇒ ∃α,β ∈ R, αX1 + βX2 = 0. (105)

Thus, as the determinant det4 is a 4-linear alternating form, we have, for example:

τ (X1 ∧X2 ∧X3)X1 = 0 i.e. X1 ⊥4 (X1 ∧X2 ∧X3)
τ (X1 ∧X2 ∧X3)X2 = 0 i.e. X2 ⊥4 (X1 ∧X2 ∧X3)
τ (X1 ∧X2 ∧X3)X3 = 0 i.e. X3 ⊥4 (X1 ∧X2 ∧X3)
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C The dual operator

C.1 Generalities

Definition C.1

The Hodge dual operator on A (1,3,R) is the linear application defined by:

∗ ∶ A (1,3,R) Ð→ A (1,3,R)

(0 aT

a j (b)) z→ (0 bT

b j (−a))

Thus, for all a ∶= ∑3
i=1 a

iei, b ∶= ∑3
i=1 a

iei ∈ R3:

∗(a⊖ b) = ∗
⎛
⎜⎜⎜
⎝

0 a1 a2 a3

a1 0 −b3 b2

a2 b3 0 −b1
a3 −b2 b1 0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0 b1 b2 b3

b1 0 a3 −a2
b2 −a3 0 a1

b3 a2 −a1 0

⎞
⎟⎟⎟
⎠
= b⊖ (−a) . (106)

The application ∗ is an automorphism of A (1,3,R) because we have:

∀M ∶= (0 aT

a j (−b)) ∈ A (1,3,R) , ∗(∗ (M)) = ∗(0 aT

a j (−b)) = (
0 −bT
−b j (−a)) = −M. (107)

We have the following properties.

Proposition C.2

(i) For all M ∈ A (1,3,R) and all X ∈ R1,3, the vector ∗(M)X is orthogonal to X.

(ii) For all M ∈ A (1,3,R), we have:

(∗ (M))2 =M2 − 1

2
Tr (M2) I4.

(iii) For all M ∈ A (1,3,R) and all Y ∈ R1,3, the mapping:

Y ∈ R1,3 z→ ∗(M +Xτ (Y ) − Y τ (X))X

is constant at ∗(M)X.

Proof. (i) Let us set Y ∶= ∗ (M)X. Since ∗(M) ∈ A (1,3,R) and τ (X)Y ∈ R, we have:

τ (X)Y = τ (τ (X)Y ) = τ (X) τ (∗ (M))X = τ (X) (− ∗ (M))X = −τ (X)Y

i.e., τ (X)Y = 0.

(ii) For any M ∶= (0 aT

a j (b)) ∈ A (1,3,R):

M2 − 1

2
Tr (M2) I4 = (

0 aT

a j (b))(
0 aT

a j (b)) −
1

2
Tr (M2) I4

= ( a
Ta aT j (b)

j (b)a aaT + j (b)2) −
aTa +Tr (aaT + j (b)2)

2
I4

= ( aTa −bT j (a)
−j (a) b aaT + j (b)2) − a

TaI4 −
Tr (bbT − bT bI3)

2
I4
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= ( 0 −bT j (a)
−j (a) b aaT − aTaI3 + j (b)2

) − bT bI4 = (
bT b −bT j (a)
−j (a) b bbT + j (a)2)

= (0 bT

b −j (a))(
0 bT

b −j (a)) = (∗ (M))
2

(iii) Let us define:

X ∶= (t
r
) , Y ∶= (t

′

r′
) , M ∶= (0 aT

a j (b)) .

We have:

∗(M)X = (0 bT

b j (−a))(
t
r
) = ( bT r

j (−a) r + tb) = (
bT r

r ∧ a + tb)

and:

M +Xτ (Y ) − Y τ (X) = (0 aT

a j (b)) + (
t
r
)(t′ −(r′)T ) − (t

′

r′
)(t −rT )

= ( 0 aT + t′rT − t (r′)T

a + t′r − tr′ j (b) + r′rT − r (r′)T
)

= ( 0 aT + t′rT − t (r′)T
a + t′r − tr′ j (b + r ∧ r′) )

Thus we have:

∗(M +Xτ (Y ) − Y τ (X))X = ( 0 bT + (r ∧ r′)T
b + r ∧ r′ j (a + t′r − tr′))(

t
r
)

= ( bT r
r ∧ a + tb) = ∗(M)X

is therefore independent of X.

Lemma C.3

Let M ∈ A (1,3,R) and X ∈ R1,3 non-zero. Define Y ∶= ∗ (M)X. Suppose that τ (X)X =
τ (Y )Y = 0. Then Y ∈ VectR (X).

Proof. Let us decompose the vectors X and Y in R1,3:

X ∶= (t
r
) , Y ∶= (t

′

r′
) .

From point (i) of proposition C.2, we have τ (X)Y = 0, i.e.:

(i) 0 = τ (X)X = t2 − rT r

(ii) 0 = τ (Y )Y = (t′)2 − (r′)T r′ = 0
(ii) 0 = τ (X)Y = tt′ − rT r′

Thus, we have from points (i) and (ii):

0 = t (tt′ − rT r′) = rT rt′ − trT r′ = rT (t′r − tr′)

0 = t′ (tt′ − rT r′) = t (r′)T r′ − t′rT r′ = −(r′)T (t′r − tr′)
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Hence, r, r′ ∈ Vect (t′r − tr′)⊥ (in R3 with the usual scalar product) and t′r−tr′ ∈ Vect (r, r′). Therefore,
t′r − tr′ = 0. From point (i), we have t ≠ 0 (since otherwise r = 0 and thus X = 0, contradicting the
assumption), and therefore:

r′ = t
′

t
r,

and thus we obtain:

Y = (t
′

r′
) = t

′

t
(t
r
) = t

′

t
X ∈ VectR (X) .

C.2 Hodge operator and Lorentz group

Let us begin with a lemma on the matrices of L orn.

Lemma C.4

Let Ln ∶= (
a bT

c d
) ∈L orn.

(i) We have:
det (ad − cbT ) = a2.

(ii) We have:

1 = a2 − cT c ac = db
I3 = ddT − ccT ab = dT c

(iii) We have det (d) = a and:
Cof (d) = ad − cbT .

Proof. (i) Since a ≠ 0, by Schur complement, we have:

Ln = (
a bT

c d
) = ( 1 0

c/a I3
)(a 0

0 d − 1
acb

T)(
1 1

ab
T

0 I3
)

Thus:

1 = det (Ln) = adet(d −
1

a
cbT) = adet((1

a
I3) × (ad − cbT )) =

1

a2
det (ad − cbT ) .

(ii) Since Ln ∈L orn, we have:

(1 0
0 I3

) = (a bT

c d
)( a −cT
−b dT

) = (a
2 − bT b −acT + bTdT
ac − db ddT − ccT )

(1 0
0 I3

) = ( a −cT
−b dT

)(a bT

c d
) = ( a

2 − cT c abT − cTd
−ab + dT c dTd − bbT)

Thus, we have the relations:

1 = a2 − cT c = a2 − bT b ac = db
I3 = ddT − ccT = dTd − bbT ab = dT c

(iii) We have:

d (adT − bcT ) = addT − dbcT = a (I3 + ccT ) − dbcT = aI3 + (ac − db) cT = aI3.
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Thus, from (i), we have:
a3 = det (d)det (adT − bcT ) = det (d)a2

i.e., we have det (d) = a. Thus:
Cof (d) = ad − cbT .

Thus, we obtain the lemma.

We deduce the following important proposition.

Proposition C.5

For all M ∈ A (1,3,R) and all L ∈L or:

∗(LMτ (L)) = det (L)L ∗ (M) τ (L) .

Proof. We treat two cases.

(1) Case L ∶= PνTλ. For all M ∶= (0 aT

a j (b)) ∈ A (1,3,R), we have:

∗(LMτ (L)) = ∗(PνTλ (0 aT

a j (b))T
λPν)

= ∗( 0 (−1)λ+ν aT
(−1)λ+ν a j (b)

) = (0 bT

b (−1)λ+ν j (−a))

det (L)L ∗ (M) τ (L) = det (PνTλ)PνTλ ∗ (0 aT

a j (b)) τ (P
νTλ)

= (−1)λ+3ν PνTλ (0 bT

b j (−a))T
λPν

= (−1)λ+ν ( 0 (−1)λ+ν bT
(−1)λ+ν b j (−a)

) = (0 bT

b (−1)λ+ν j (−a))

Thus, we obtain the result in this case.

(2) Case L ∶= Ln ∶= (
a bT

c d
) ∈L orn. We apply the results of lemma C.4.

Since the result is linear in M , it suffices to show the result on the basis (97) of A (1,3,R). For
all i ∈ {1,2,3}, using the lemma, we have:

Ln ∗ (0⊖ ei) τ (Ln) = (
a bT

c d
)(0 eTi
ei 0

)( a −cT
−b dT

) = (b
T ei aeTi
dei ceTi

)( a −cT
−b dT

)

= ( 0 aeTi d
T − bT eicT

adei − ceTi b ceTi d
T − deicT

) = ( 0 eTi (adT − bcT )
(ad − cbT ) ei j ((dei) ∧ c)

)

= ( 0 eTi Cof (d)
T

Cof (d) ei j (j (dei) c)
) = ( 0 eTi Cof (d)

T

Cof (d) ei j (−j (c)dei)
)

∗ (Ln (0⊖ ei) τ (Ln)) = ∗((
a bT

c d
)(0 0

0 j (ei)
)( a −cT
−b dT

)) = ∗((0 bT j (ei)
0 dj (ei)

)( a −cT
−b dT

))

= ∗(−b
T j (ei) b bT j (ei)dT
−dj (ei) b dj (ei)dT

) = ∗( 0 1
ac

Tdj (ei)dT
− 1
adj (ei)d

T c j (Cof (d) ei)
)

= ( 0 eTi Cof (d)
T

Cof (d) ei j ( 1adj (ei)d
T c)) = (

0 eTi Cof (d)
T

Cof (d) ei j ( 1aj (Cof (d) ei) c)
)
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= ( 0 eTi Cof (d)
T

Cof (d) ei j (−j (c) 1
aCof (d) ei)

) = ( 0 eTi Cof (d)
T

Cof (d) ei j (−j (c)dei)
) .

because:

j (c)d = 1

a
j (c) (Cof (d) + cbT ) = 1

a
j (c)Cof (d) + 1

a
j (c) cbT = 1

a
j (c)Cof (d) .

Thus, applying the operator ∗ on these two relations, we have for all i ∈ {1,2,3}:

∗(Ln (ei ⊖ 0) τ (Ln)) = ∗ (Ln ∗ (0⊖ ei) τ (Ln))
= ∗ (∗ (Ln (0⊖ ei) τ (Ln)))
= −Ln (0⊖ ei) τ (Ln)
= Ln ∗ (ei ⊖ 0) τ (Ln)

Thus, we obtain the result in this case as well.

We will deduce the general case from cases (1) and (2). For any L ∶= PνTλLn, we have with
M ′ ∶= LnMτ (Ln):

∗(LMτ (L)) = ∗(PνTλM ′TλPν)
= det (PνTλ)PνTλ ∗ (M ′)TλPν

= det (PνTλ)PνTλ ∗ (LnMτ (Ln))TλPν

= det (PνTλ)PνTλ det (Ln)Ln ∗ (M) τ (Ln)TλPν

= det (L)L ∗ (M) τ (L)

Thus, the result follows.

C.3 Links between the map j4 and the dual operator

The following property states some useful links between the operator ∗ and the map j4.

Proposition C.6

(i) For all X1,X2 ∈ R1,3, we have:

∗(X2τ (X1) −X1τ (X2)) = j4 (X1,X2)

(ii) For all X1,X2 ∈ R1,3 and any M ∈ A (1,3,R), we have:

τ (X1) ∗ (M)X2 =
1

2
Tr (j4 (X1,X2)M) .

(iii) Let M ∈ A (1,3,R) and X ∈ R1,3 such that:

τ (X)X = 1 , MX = 0.

Then we have:
M = j4 (∗ (M)X,X) .

Proof. (i) For all X1 ∶= (
t1
r1
) ,X2 ∶= (

t2
r2
) ∈ R1,3, we have:

∗(X2τ (X1) −X1τ (X2)) = ∗((
t2t1 −t2rT1
t1r2 −r2rT1

) − (t1t2 −t1rT2
t2r1 −r1rT2

)) = ∗( 0 t1r
T
2 − t2rT1

t1r2 − t2r1 r1r
T
2 − r2rT1

)

= ( 0 rT1 j (r2)
T

j (r2) r1 j (t2r1 − t1r2)
) = j4 (X1,X2)
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(ii) We have for all M ∶= (0 aT

a j (b)) ∈ A (1,3,R):

1

2
Tr (j4 (X1,X2)M) =

1

2
Tr(( 0 rT1 j (r2)

T

j (r2) r1 j (t2r1 − t1r2)
)(0 aT

a j (b)))

= 1

2
Tr(( rT1 j (r2)

T a rT1 j (r2)
T j (b)

j (t2r1 − t1r2)a j (r2) r1aT + j (t2r1 − t1r2) j (b)
))

= t2rT1 b + t1bT r2 − rT1 j (a) r2

τ (X1) ∗ (M)X2 = (t1 rT1 )(
0 bT

b j (−a))(
t2
r2
) = (rT1 b t1b

T − rT1 j (a))(
t2
r2
)

= t2rT1 b + t1bT r2 − rT1 j (a) r2

(iii) Let us set:

M ∶= (0 aT

a j (b)) , X ∶= (t
r
) , Y ∶= (t

′

r′
) .

Since ∗(M)X = Y , we have τ (X)Y = 0 by point (i) of proposition C.2. Thus, we have the four
equalities:

(a) 0 = τ (X)Y = tt′ − rT r′

(b) 1 = τ (X)X = t2 − rT r

(c) 0 =MX = (0 aT

a j (b))(
t
r
) = ( aT r

ta + b ∧ r)

(d) (t
′

r′
) = Y = ∗(M)X = ∗(0 aT

a j (b))(
t
r
) = (0 bT

b j (−a))(
t
r
) = ( bT r

tb − a ∧ r)

We have t2 ≥ 1 by point (b) (thus t ≠ 0), and therefore by points (c) and (d), we have:

a = −1
t
b ∧ r , b = 1

t
(r′ + a ∧ r)

Since rTa = 0 (by point (c)), we have with point (b):

a = −1
t
b ∧ r = −1

t
(1
t
(r′ + a ∧ r)) ∧ r = 1

t2
(r ∧ r′ + rT r.a − rTa.r)

= 1

t2
(r ∧ r′ + (t2 − 1)a) = 1

t2
(r ∧ r′ − a) + a

i.e., we have a = r ∧ r′. Similarly, we have for b with points (a) and (b):

b = 1

t
(r′ + (r ∧ r′) ∧ r) = 1

t
(r′ + rT r.r′ − (r′)T r.r) = 1

t
(r′ + (t2 − 1) r′ − tt′r) = tr′ − t′r

Thus, we have:

M = ( 0 (r ∧ r′)T
r ∧ r′ j (tr′ − t′r)) = j4 (Y,X) .

We deduce the following corollary on the application j4.

Corollary C.7

For all L ∈L or and all X1,X2 ∈ R1,3:

j4 (LX1,LX2) = det (L)Lj4 (X1,X2) τ (L) .
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Proof. Let us set M ∶=X1τ (X2) −X2τ (X1) ∈ A (1,3,R), and by point (ii) of proposition C.2:

j4 (LX1,LX2) = ∗ (LX1τ (X2) τ (L) −X2τ (X1) τ (L)) = ∗ (LMτ (L))
= det (L)L ∗ (M) τ (L) = det (L)L ∗ (X1τ (X2) −X2τ (X1)) τ (L)
= det (L)Lj4 (X1,X2) τ (L)

C.4 Pfaffian in a Minkowski Space

Definition C.8

Let M ∶= (0 aT

a j (b)) ∈ A (1,3). The pfaffian of M is the real number:

pf (M) ∶= aT b.

Thus, for M ∈ A (1,3), we have:

pf (M) = [M]12[M]43 + [M]13[M]24 + [M]14[M]32. (108)

We have the following simple properties.

Proposition C.9

Let M ∈ A (1,3).

(i) We have:
pf (∗ (M)) = −pf (M) .

(ii) We have:
pf (τ (M)) = −pf (M) .

(iii) For all α ∈ R, we have:
pf (αM) = α2pf (M) .

(iv) We have:
∗(M)M = pf (M) I4.

(v) We have:
det (M) = −pf (M)2 .

Proof. Let M ∶= (0 aT

a j (b)) ∈ A (1,3).

(i) We have:

pf (∗ (M)) = pf (0 bT

b j (−a)) = −a
T b = −pf (M) .

(ii) We have:

pf (τ (M)) = pf ( 0 −aT
−a j (b)T) = pf (

0 −aT
−a −j (b)) = −pf (M) .

(iii) For all α ∈ R, we have:

pf (αM) = pf ( 0 αaT

αa αj (b)) = (αa)
T (αb) = α2pf (M) .
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(iv) From point (iii) of lemma A.10:

∗(M)M = (0 bT

b j (−a))(
0 aT

a j (b)) = (
bTa bT j (b)

j (−a)a baT + j (−a) j (b)) = (
bTa 0

0 bTaI3
) = bTaI4 = pf (M) I4.

(v) Let a ∶= ∑3
i=1 a

iei and b ∶= ∑3
i=1 b

iei. We have:

det (M)

=det
⎛
⎜⎜⎜
⎝

0 a1 a2 a3

a1 0 −b3 b2

a2 b3 0 −b1
a3 −b2 b1 0

⎞
⎟⎟⎟
⎠

= − a1
RRRRRRRRRRRRRR

a1 −b3 b2

a2 0 −b1
a3 b1 0

RRRRRRRRRRRRRR
+ a2
RRRRRRRRRRRRRR

a1 0 b2

a2 b3 −b1
a3 −b2 0

RRRRRRRRRRRRRR
− a3
RRRRRRRRRRRRRR

a1 0 −b3
a2 b3 0
a3 −b2 b1

RRRRRRRRRRRRRR
= − a1 (b1b3a3 + b1b2a2 + b1b1a1) + a2 (−b2b2a2 − b2b3a3 − b1b2a1) − a3 (b1b3a1 + b2b3a2 + b3b3a3)

= − (a1b1 + a2b2 + a3b3)2 = −(aT b)2 = −pf (M)2 .

Proposition C.10

For all M ∈ A (1,3) and any A ∈M (4,R), we have:

pf (AMτ (A)) = det (A)pf (M) .

Proof. Since det (τ (A)) = det (A), we have:

−pf (AMτ (A))2 = det (AMτ (A)) = det (A)2 det (M) = −det (A)2 pf (M)2

i.e., we have:
(∗) ∶ pf (AMτ (A)) = ±det (A)pf (M) .

We will prove the result by density and connectedness using matrices with complex coefficients.
We extend the application of τ to any matrix A ∈M (1 + k,1 + l,R) with k, l ∈ N by setting:

τ (A) ∶= I1,lAT I1,k.

We then denote 5:
A (1,3,C)R ∶= {M ∈M (4,C) , τ (M) = −M}.

We show the following lemma.

Lemma C.11

(i) The set GL (4,C) is dense in M (4,C).

(ii) The set A (1,3,C)R ∩GL (4,C) is dense in A (1,3,C)R.

(iii) GL (4,C) is arc-connected.

5We denote this set as such to avoid confusion with the set of anti-Hermitian matrices in a Minkowski space
A (1,3,C) ∶= {M ∈M (4,C) , I1,3A

T
I1,3 = −M}
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Proof. (i) Let M ∈M (4,C). For all k ∈ N∗, define Bk ∶=M − 1
kI4. For all k ∈ N∗:

det (Bk) = det(M −
1

k
I4) = det(

1

k
I4 −M) = χM (1/k)

where χM is the characteristic polynomial of M of degree 4 (thus admitting at most 4 distinct
complex roots). Hence, there exists k0 ∈ N∗ such that for all k ≥ k0, χM (1/k) ≠ 0 (otherwise,
χM would have an infinite number of roots). Therefore, the sequence (Bk+k0)k is a sequence in
GL (4,C) converging to M . Thus, the result.

(ii) Let us define:

B ∶= e1 ⊖ e1 ∶=
⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎟
⎠
.

We have det (B) = −pf (B)2 = −(eT1 e1)
2 = −1. Therefore, B is invertible, i.e., B ∈ A (1,3,C)R ∩

GL (4,C).
Let M ∈ A (1,3,C)R. For all k ∈ N∗, define Bk ∶=M − 1

kB. For all k ∈ N∗:

det (Bk) = det(M −
1

k
B) = det (−B)det(1

k
I4 −B−1M) = det (B)χB−1M (1/k)

where χB−1M is the characteristic polynomial of B−1M of degree 4 (thus admitting at most 4
distinct complex roots). Therefore, there exists k0 ∈ N∗ such that for all k ≥ k0, χB−1M (1/k) ≠ 0.
Since det (B) ≠ 0, the sequence (Bk+k0)k is a sequence in GL (4,C) converging to M . Hence, the
result.

(iii) Let A,B ∈ GL (4,C). Define P (X) ∶= det (XA + (1 −X)B). Then, P is a polynomial over C
of degree at most 4 (and hence has at most 4 distinct complex roots). Therefore, the open set
U ∶= {z ∈ C, P (z) ≠ 0} is arc-connected in C. Since 0,1 ∈ U (because A,B are invertible), the
function

g ∶ U Ð→ GL (4,C)
z z→ zA + (1 − z)B

is continuous, and thus g (U ) is arc-connected. Since A = g (1) and B = g (0) ∈ g (U ), we deduce
that GL (4,C) is arc-connected.

Let M ∈ A (1,3,C) ∩GL (n,C). From (∗), we have a function:

ΦM ∶ GL (4,C) Ð→ {±1}
A z→ pf (AMτ (A))

det (A)pf (M)

Since ΦM (I4) = 1 and GL (4,C) is connected, the function ΦM is constant at 1.
Now define:

Ψ ∶ M (4,C) ×A (1,3,C) Ð→ C
(A,M) z→ pf (AMτ (A)) − det (A)pf (M)

Then Ψ is zero on the set GL (4,C)×(A (1,3,C) ∩GL (4,C)), which is dense in M (4,C)×A (1,3,C).
Since Ψ is continuous (because Ψ (A,M) is polynomial in the coefficients of A and M), it is zero on
M (4,C) ×A (1,3,C). Hence, the result.
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C The dual operator

Corollary C.12

Let k ∈ N and M ∈ A (1,3). We have:

pf (M2k+1) = (−1)k pf (M)2k+1 .

Proof. We prove this by induction on k ∈ N:

(Pk) ∶ pf (M2k+1) = (−1)k pf (M)2k+1 .

(i) We have pf (M1) = pf (M)1. Therefore, (P1) is true.

(ii) Let k ∈ N. Suppose (Pk) is true. From proposition C.10, we have:

pf (M2k+3) = pf (MM2k+1M) = det (M)pf (M2k+1)
= −pf (M)2 × (−1)k pf (M)2k+1 = (−1)k+1 pf (M)2k+3 .

Therefore, (Pk+1) is true.

(iii) By induction, (Pk) is true for all k ∈ N.

We conclude with the following proposition.

Proposition C.13

Let X,Y ∈ R1,3 and M ∈ A (1,3). Then we have:

pf (M +Xτ (Y ) − Y τ (X)) = pf (M) + τ (Y ) ∗ (M)X.

Proof. Let us define:

X ∶= (t
r
) , Y ∶= (t

′

r′
) , M ∶= (0 aT

a j (b)) .

We have:

∗(M)X = (0 bT

b j (−a))(
t
r
) = ( bT r

j (−a) r + tb) = (
bT r

r ∧ a + tb)

and:

M +Xτ (Y ) − Y τ (X) = (0 aT

a j (b)) + (
t
r
)(t′ −(r′)T ) − (t

′

r′
)(t −rT )

= ( 0 aT + t′rT − t (r′)T

a + t′r − tr′ j (b) + r′rT − r (r′)T
)

= ( 0 aT + t′rT − t (r′)T
a + t′r − tr′ j (b + r ∧ r′) )

Thus we have:

pf (M +Xτ (Y ) − Y τ (X)) = (aT + t′rT − t (r′)T ) (b + r ∧ r′)

= aT b + t′rT b − t (r′)T b + aT (r ∧ r′) + (t′rT − t (r′)T ) (r ∧ r′)

= aT b + t′bT r − t (r′)T b − (r′)T (r ∧ a)

= pf (M) + (t′ −(r′)T )( bT r
r ∧ a + tb)

= pf (M) + τ (Y ) ∗ (M)X
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