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Abstract:	

It	 is	 recalled	 that	 the	 construction	of	 special	 relativity	 and	 then	general	 relativity	was	
based	on	changes	in	the	geometric	paradigm.	Starting	from	the	difficulties	encountered	
by	the	LCDM	model,	we	propose	this	change	of	geometric	paradigm	represented	by	the	
Janus	cosmological	model,	 specifying	 its	 topological	bases,	 its	 structure	as	a	 two-sheet	
covering	of	 a	projective	P4	 and	 its	 associated	dynamical	 group	 structure.	We	 show	he	
such	 geometry	 of	 spacetime	 goes	 with	 PT-symmetry.	 This	 is	 completed	 by	 the	
construction	of	its	system	of	coupled	field	equations	from	an	action	

____________________________________________________________________________________________________	

1	-	Introduction.		

Recent	observations	show	that	the	current	cosmological	model,	the	LCDM	model,	which	
is	 considered	 to	 be	 standard,	 is	 confronted	with	 a	 growing	 number	 of	 contradictions.	
These	 include	the	discovery	of	 the	 lacunar	structure	of	 the	universe,	 the	early	birth	of	
galaxies	and	first-generation	stars	revealed	by	the	JWST	telescope,	the	lack	of	detection	
of	primeval	dark	matter	and	the	impossibility	of	giving	an	identity	to	dark	energy.	As	a	
result,	 a	 growing	 number	 of	 scientists	 agree	 that	 it	 is	 now	 legitimate	 to	 envisage	 a	
paradigm	 shift,	 i.e.	 an	 attempt	 to	 go	 beyond	 the	 framework	 imposed	 by	 General	
Relativity.	This	last	model	is	a	perfect	illustration	of	the	geometric	nature	of	successive	
paradigm	 shifts.	 Prior	 to	 1905,	 space	 and	 time	 were	 considered	 as	 independent	
variables.	 A	 space	 that	was	 also	 assumed	 to	 be	 Euclidean,	 i.e.	 defined	 by	 a	 Euclidean	
metric,	operating	in	three	dimensions	of	space	 			

(1)																																																																	 		

The	corresponding	Gramm	matrix	is	the	unit	matrix:		
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(2)																																																																				 		

The	isometry	group	being	Euclid's	group	is:		

(2)																																																																								 	 		

Where	a	belongs	to	the	orthogonal	group	and	where	C	is	the	translation	vector		:		

	(3)																																																																							 		

The	advent	of	Special	Relativity	can	be	summed	up	by	the	integration	of	time	and	space	
into	a	four-dimensional	space-time.	 ,	defined	by	its	Lorentzian	metric:		

(2)																																																						 	

The	corresponding	Gramm	matrix	is:		

(3)																																																												 		

The	isometry	group	becomes	the	Poincaré	group,	represented	by	the	matrices:		

(4)																																																																											 		

Where	C	is	the	vector	of	space-time	translations:		

(5)																																																																							 		

And	where	L	represents	the	Lorentz	group,	defined	by		:		

(6)																																																																												 		
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The	 transition	 to	 General	 Relativity	 means	 that	 space-time	 is	 given	 a	 curvature.	 The	
metric	is	no	longer	the	Lorentzian	metric	(2)	but	a	more	general	metric:		

(7)																																																																	 		

	being	the	metric	tensor.		

This	General	Relativity	is	then	equipped	with	a	field	equation,	introduced	in	1915	[1]	
from	the	Hilbert-Einstein	action:	

(8)																																																										 		

Where	R	is	the	Ricci	scalar,	L	the	Lagrangian	of	matter,	g	the	determinant	of	the	metric,	
the	Einstein	constant	and	 the	cosmological	constant	.	Its	derivation	leads	to	the	field	

equation:	

(9)																																																												 	

Space-time	then	has	the	structure	of	a	Lorentzian	manifold	M4.	 	

In	stationary	situations,	theorists	relied	on	the	metric	solutions	introduced	in	1916	by	K.	
Scharzchild	([2],[3]).	However,	from	the	late	1970s	onwards,	in	order	to	account	for	the	
flat	 velocity	 profiles	 at	 the	 periphery	 of	 galaxies	 and	 the	 high	 velocities	 of	 galaxies	 in	
clusters,	 theorists	 began	 to	 consider	 the	 existence	 of	 positive-mass	 dark	matter	 of	 an	
unknown	nature	that	escaped	observation.	

For	unsteady	situations,	until	2011	they	used	solutions	to	the	cosmological	constant-free	
equation,	 based	 on	 an	 assumption	 of	 homogeneity	 and	 isotropy.	 But	 observations	 in	
2011	 showed	 that	 the	 cosmic	 expansion	 was	 accelerating	 ([4],	 [5],	 [6]).	 The	
cosmological	constant	was	then	reintroduced	into	the	equation.		

There	 is	 one	 final	 point:	 the	 absence	 of	 observations	 of	 primordial	 antimatter.	 The	
photons	that	make	up	the	background	radiation	at	2.7°K	are	supposed	to	result	from	the	
annihilation	 of	 primordial	 matter-antimatter	 pairs.	 Normally,	 this	 annihilation	 should	
have	been	complete	and	it	remains	a	mystery	why	any	matter	particle	survived.	Nor	do	
we	understand	why	its	antimatter	equivalent	has	not	been	detected.	This	is	no	mean	feat,	
in	the	sense	that	we	are	losing	half	the	universe	from	the	outset.		

	

2	–	When	André	Sakharov	was	the	first	to	envisage	a	change	in	geometry.		

At	the	stage	we	have	just	described,	the	universe	is	an	orientable	M4	manifold,	including	
a	singular	point,	the	Big	Bang.	There	is	no	limit	to	cosmic	expansion.	Cosmic	acceleration	
gives	space-time	a	negative	curvature	index.		
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Fig.	1	:		The	standard	universe	model	

	

But	 the	universe	 then	presents	a	matter-antimatter	dissymmetry.	The	existence	of	 the	
latter	is	proven:		the	reactions	in	which	the	C-symmetry	appears	take	place	in	different	
timescales.	 In	 1967,	 Sakharov	 ([7],[8],[9])	 therefore	 imagined	 reconstituting	 global	
symmetry	 by	 endowing	 the	 knowable	 universe	 with	 a	 twin	 universe,	 CPT-symmetric	
with	our	own.	

	

Fig.	2	:	The	twin	worlds	of	A.	Sakharov.	

	

Considering	that	matter	arises	from	the	union	of	quarks	and	antimatter	from	antiquarks,	
as	well	as	the	dissymmetry	already	observed,	he	proposes	that	the	synthesis	of	matter	in	
our	 universe	 was	 faster	 than	 the	 synthesis	 of	 antimatter.	 After	 annihilation,	 photons	
from	 the	 annihilations,	 a	 small	 quantity	 of	 matter	 and	 an	 equivalent	 remnant	 of	
antiquarks	would	remain	in	our	side	of	the	universe.	The	situation	being	reversed	in	the	
twin	universe.	This	 theory	 is	 currently	 the	only	explanation	 for	 the	proven	absence	of	
cosmological	antimatter.	Note	that	the	Big	Bang	singularity	can	be	replaced	by	a	tubular	
passage.:		
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Fig.3	:	The	Sakharov	model,	without	singularity.		

	

3	–	The	Janus	model:	how	to	fold	this	structure	in	on	itself	[10].		

Before	considering	this,	 it	 is	necessary	to	assume	that	the	observable	universe	has	the	
topology	of	a	sphere	S2.	Below	is	the	didactic	image	in	2D.		

	

	

Fig.4	:	Didactic	image	of	spherical	space-time.	

	

In	this	didactic	image,	space,	closed	in	on	itself,	is	represented	by	a	simple	circle	which,	
starting	from	a	first	Big	Bang	singularity,	experiences	a	state	of	maximum	expansion,	at	
the	equator,	then	contracts	as	it	converges	towards	a	second	singularity,	known	as	the	
Big	Crunch,	these	two	points	being	antipodal.:		
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Fig.	5	:	The	Big	Bang	and	the	Big	Crunch,	antipodal.	

	

The	 idea	 of	 having	 points	 in	 space-time	 interact	 with	 points	 located	 at	 space-time	
antipodes	was	considered	in	1994	[10].	The	universe	can	then	be	considered	as	the	two-
folds	cover	of	an	inorientable	projective	P4.	To	illustrate	this	idea,	let	us	show	how	a	2D	
spacetime	can	then	be	configured	as	a	two-folds	cover	of	a	P2	projective,	which	can	be	
represented	by	the	surface	imagined	in	1902	by	the	mathematician	Werner	Boy	[11].	

	

	

Fig.	6	:	Boy's	surface,	the	vicinity	of	its	equator	and	the	triple	point.	

	

This	 triple	 point	 arises	 only	 from	 the	 way	 in	 which	 the	 projective	 space	 P2	 is	
represented	as	an	immersion	in	R3.	Similarly,	the	projective	does	not	have	a	helical	self-
intersection	curve.		
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Fig.7	:	Boy's	surface,	triple	point	and	self-intersection	curve.		

	

This	only	 results	 from	 the	mode	of	 representation	 in	 the	 form	of	an	 immersion	 in	R3.	
Just	 as	 the	 self-intersection	curve	of	 the	Klein	bottle	 is	only	 the	 result	of	 this	mode	of	
representation.		

	

Fig.	8	:	Klein	bottle	and	T2	torus.	

	

The	T2	torus	is	itself	the	result	of	the	two-folds	covering	of	this	Klein	bottle	K2.	We	can	
endow	the	Boy	surface	with	meridians,	converging	at	its	single	pole.	The	Euler	Poincaré	
characteristic	of	the	Boy	surface	is	unity.	If	we	decide	to	tessellate	it,	this	tessellation	will	
therefore	 include	 a	 single	 tessellation	 singularity	 of	 order	 unity	 [12].	 	 Since	 the	
characteristic	of	a	sphere	of	even	dimension	is	2,	this	is	also	the	characteristic	of	the	2D	
sphere,	 which	 therefore	 has	 two	 tessellation	 singularities	 of	 order	 unity,	 its	 poles.	
During	 the	coating	process,	 these	 two	antipodal	poles	will	 coincide.	Let's	 look	at	what	
happens	to	the	meridians	of	the	sphere,	which	are	the	neighbors	of	its	time	lines.	These	
will	be	configured	as	a	 two-sheet	 covering	of	 the	meridians	of	Boy's	 surface.	Here	are	
three	meridians	of	the	surface.			
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Fg.9	:	Méridiens	de	la	surface	de	Boy.		

	

And	its	equator:		

	

		

	

Fig.10	:	The	equator	of	Boy's	surface:	a	Möbius	strip	with	3	half-turns.	

	

Next,	the	equator	and	one	meridian:		
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Fig.	11	:	Boy's	surface,	equator	and	a	meridian.		

The	coating	operation	will	 invert	 the	arrow	of	 time,	as	can	be	seen	 in	 the	vicinity	of	a	
meridian	time	line,	which	is	then	configured	as	a	two-sheet	coating	of	a	half-turn	Möbius	
strip.:		

	

	

Fig.12	:	Reversing	time	on	a	meridian.	

This	 can	also	be	 seen	by	bringing	antipodal	points	on	 the	equator	of	 a	 sphere	S2	 into	
coincidence.	

	 	

Fig.13	:	Time	reversal	on	the	equator.	
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This	coating	operation	also	induces	an	enantiomorphy	of	adjacent	surface	portions.	Here	
is	an	example	of	the	folding	of	the	equator	of	the	sphere	S2	according	to	the	two-sheet	
coating	of	a	Möbius	strip	with	three	half-turns.			

	

14	–	The	mirror	symmetry	induced	by	the	two-sheet	covering	of	a	projective	P2.	

	

In	relation	to	the	Sakharov	model,	we	obtain	the	following:			

	

	

	

Fig.15	:	Didactic	image	of	the	Janus	model.	

	

Note	in	passing	that	we	can	then	make	the	singularity	at	the	common	pole	disappear	by	
replacing	it	with	a	small	tube.		
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Fig.16	:	The	polar	singularity	disappears.	

	

In	other	words:		

	

Fig.17	:	Cosmological	model	with	no	Big	Bang	singularity.			

	

The	 object,	 whose	 Euler-Poincaré	 characteristic	 is	 then	 zero,	 corresponds	 to	 the	
configuration	given	to	a	toric	space-time	in	a	two-sheet	covering	of	a	Klein	bottle	K2.		

All	these	operations	can	be	extended	to	a	spacetime	with	the	topology	of	an	orientable	
sphere	S4,	which	is	then	configured	as	a	two-sheet	covering	of	a	projective	P4.	We	know	
that	PN	projectives	are	inorientable	when	N	is	even,	and	orientable	when	N	is	odd.		

These	 geometric	 considerations	 lead	 us	 to	 consider	 the	 interaction	 between	 two	
adjacent	regions	of	PT-symmetric	space-time	

		.		
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4	–	Interpretation	of	T-symmetry	according	to	dynamic	group	theory.	

	
The	first	Janus	group,	incorporating	this	PT-symmetry	[13],	is	the	dynamic	group	[14].:		

(10)																																																					 	t	

Lo	 is	 then	 the	 subgroup	 of	 the	 complete	 Lorentz	 group,	 or	 restricted	 Lorentz	 group,	
limited	to	its	two	orthochronous	components.	The	value	 then	corresponds	to	this	
PT-symmetry.	The	Lorentz	group	has	four	connect	components.	

Let's	call	Ln	the	neutral	component,	which	contains	the	neutral	element	of	the	group.		

Ls	is	the	component	that	inverts	space	but	not	time.		

Lt	is	the	component	that	inverts	time	but	not	space.		

Lst	is	the	component	that	inverts	both	space	and	time.		

The	first	two	form	the	orthochronous	subgroup	:		

(11)																																																																								 		

The	next	two	are	the	two	antichronous	components::		

(12)																																																																									 	

It	is	clear	that:		

(13)																																																																										 	

This	 configuration	 would	 therefore	 cause	 two	 adjacent	 regions	 to	 interact,	 with	 the	
action	of	adjacent	masses	being	equivalent	to	that	of	negative	masses	

	

3	–	Extension	incorporating	CPT-symmetry.		

The	fact	of	endowing	masses	with	an	electric	charge	has	been	considered	as	the	fact	that	
they	 evolve	 in	 a	 five-dimensional	 Kaluza	 space	 ([15],	 [16]).	 If	 we	 consider	 this	 fifth	
dimension	as	a	simple	fibre,	this	additional	symmetry,	in	the	form	of	a	simple	translation	
along	this	fifth	dimension,	will	lead	to	the	constancy	of	a	scalar,	the	electric	charge.	The	
associated	group	structure	with	its	action	on	a	five-dimensional	space	is	then	[13]:		

(14)																																				 		
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The	Janus	group	[13]	translates	the	CPT-symmetry:		

(15)																																								 		

It	 then	 has	 eight	 connex	 components.	 The	 choice	 (l =	 1	 ;	m	 =	 -	 1	 )	 	 inverts	 the	 fifth	
dimension,	which	is	the	geometric	translation	of	C-symmetry	[17].			

The	choice	(l =	-	1	;	m	=		1	)		translates	CPT-symmetry.		

Note:	 if	 we	 want	 this	 configuration	 to	 reflect	 a	 configuration	 in	 the	 covering	 of	 a	
projective	 PN,	 N	must	 be	 even,	 otherwise	 the	 projective	 is	 orientable	 and	we	 lose	 the	
symmetries	on	time	and	space.	The	extension	can	therefore	be	carried	out	with	an	even	
number	of	additional	dimensions,	using	the	dynamic	group:		

	

(16)					 	

Each	additional	dimension	is	associated	with	an	invariant	scalar.	The	first	is	the	electric	
charge	q.	The	next	are	the	baryonic,	leptonic,	muonic	charges,	etc	.		

If	 this	 representation	 of	 charges	 is	 correct,	 then	 their	 number	 should	 be	 even,	which	
would	fit	in	with	the	10-dimensional	extension	of	string	theory.		

	

5-	Integration	of	negative	masses	in	the	cosmological	model.	

If	these	masses	of	opposite	signs	interact,	then	according	to	what	laws?	If	we	base	this	
action	 on	 Einstein's	 equation,	 we	 come	 up	 against	 an	 unmanageable	 paradox.	 If	 the	
source	 of	 the	 gravitational	 field	 is	 a	 positive	 mass,	 the	 metric	 derived	 from	 this	
hypothesis	gives	geodesics	that	suggest	attraction.		:	
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Fig.18	:	Geodesics	associated	with	a	field	created	by	a	positive	mass.		

	

Positive	masses	are	represented	in	red	and	negative	masses	in	green.	Since	there	is	only	
one	 family	 of	 geodesic	 solutions,	 we	 can	 deduce	 that	 positive	 masses	 attract	 their	
counterparts	 just	 as	well	 as	negative	masses.	 	Now	 let's	 look	 at	 the	 field	 created	by	 a	
negative	m:		

	

Fig	19	:	Geodesics	associated	with	a	field	created	by	a	negative	mass.	

	

Conclusion:	negative	masses	repel	their	counterparts	just	as	well	as	positive	masses.	All	
this	was	 studied	and	demonstrated	 in	1954	by	Herman	Bondi	 ([18],	 [19]).	 Let's	place	
two	masses	of	opposite	signs	in	front	of	each	other:	
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Fig.	20	:	Runaway	effect.	

Positive	mass	flees,	pursued	by	negative	mass.	The	action-reaction	principle	is	violated.	
The	 acceleration	 of	 the	 couple	 takes	 place	 at	 constant	 total	 energy,	 since	 that	 of	 the	
negative	mass	is	itself	negative.	At	the	time,	the	conclusion	was	that	it	was	impossible	to	
include	negative	masses	 in	a	cosmological	model.	 It	 is	 indeed	 impossible	with	a	single	
metric.	But	it	becomes	possible	if	we	assign	two	different	metrics	to	adjacent	folds,	

and		 .	These	two	metric	fields	will	then	generate	their	own	field	of	Ricci	tensors	

and	 	as	well	as	the	corresponding	Ricci	scalars	 and	 .	We	will	therefore	have	two	

matter	fields	 and	 .	To	these	we	will	add	two	interaction	tensors	 and		 .			

It	will	then	be	possible	to	construct	a	system	of	two	coupled	field	equations	[23]	through	
the	action	
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(17)																																			 		
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(19)																																																			 	

	

(20)																																																				 	

	

		(21)																																																			 	

	

(22)																																																						 	

			

We	get	the	system	of	coupled	field	equations		:		

(23a)																																																						 		

	

(23b)																																																						 		

If	we	 focus	 on	 the	 solutions	 in	Newtonian	 approximation,	we	 immediately	 obtain	 the	
direction	of	the	forces:		

	

Fig.21	:	Direction	of	forces	in	the	Janus	model.		

	

This	satisfies	 the	action-reaction	principle.	This	 is	due	to	 the	minus	sign	 in	 the	second	
member	 of	 the	 second	 equation.	 	 This	 system	 has	 been	 developed	 in	 the	 form	 of	 an	
unsteady	 solution,	 showing	 that	 the	 acceleration	 of	 the	 expansion	 is	 due	 to	 the	
asymmetry	of	 the	model	[22],	with	a	pre-eminence	of	 the	negative	masses	[13],	which	
then	 drives	 the	 construction	 of	 the	 structure	 on	 a	 very	 large	 scale	 [20].	 The	 study	 of	
geodesics	 in	a	 stationary	situation	 then	reveals	 the	confinement	of	positive	masses	by	
their	environment	of	negative	masses	[21].		

 

1
−g

δ( −g S )
δgµν = − χ Tµν

 

1
−g

δ( −g S)
δgµν = − χ Tµν

 

1
−g

δ( −g σ )
δgµν = χ tµν

  

1
−g

δ( −
!
g σ )

δgµν = χ tµν

 
Rµν −

1
2

R gµν = χ Tµν +
g
g

tµν
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
Rµν −

1
2

R gµν = − χ Tµν +
g
g

tµν
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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The	establishment	of	this	asymmetry,	resulting	from	an	instability	of	the	system,	which	
was	initially	symmetrical,	will	be	the	subject	of	a	subsequent	article.	

	

Conclusion	:		

We	recall	that	the	transitions,	first	to	special	relativity	and	then	to	general	relativity,	are	
based	 on	 paradigmatic	 changes	 of	 a	 purely	 geometric	 nature.	 After	 discussing	 the	
growing	difficulties	encountered	by	the	Standard	Model,	we	move	towards	a	topological	
solution.	After	evoking	Andréi	Sakharov's	attempt,	 in	which	his	twin	universes	did	not	
interact,	 we	 fold	 this	 model	 back	 on	 itself	 by	 opting	 for	 a	 two-sheet	 covering	 of	 a	
projective	P4.	We	then	show	that	this	operation	leads	to	a	PT-symmetry.	Extending	this	
model	 to	 two	 CPT-symmetric	 entities,	 we	 consider	 the	 addition	 of	 extra	 dimensions,	
extending	the	approach	initiated	by	Kaluza.	The	group	structure	is	constructed.	We	then	
show	 that	 this	 extension	 implies	 the	 addition	 of	 a	 necessarily	 even	 number	 of	 extra	
dimensions.	We	 show	 that	 a	 bimetric	 description	 is	 required	 and,	 on	 the	 basis	 of	 an	
action,	 we	 produce	 a	 system	 of	 coupled	 equations	 that	 satisfies	 the	 action-reaction	
principle,	thus	escaping	the	unmanageable	runaway	phenomenon..		
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