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Abstract

In this article, after presenting the physical foundations leading to the construction

of the Janus Cosmological Model, its principles and consequences, we focus on the

Janus symplectic group associated with it. We explore the different symmetries, its

action on the various elements of the dual of its Lie algebra, highlighting a charge

symmetry, that is, the matter-antimatter duality in both sets of components.
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1 The physico-mathematical foundations of this approach

The French mathematician Jean-Marie Souriau, who passed away in 2012, used to say, ”A

little mathematics takes you away from physics, but a lot of it brings you back”. In his work,

he provided an example of such a statement by revealing the physical quantities like energy,

momentum, and spin as objects of pure geometry, representing a brilliant application of

symplectic geometry. He is one of the few who excelled both as a high-level mathematician

and an excellent physicist. In his work Structure of Dynamical Systems [35] (today, we

prefer to use the term symplectic groups), he constructs the action of the Poincaré group on

the dual of its Lie algebra, known as the momentum space. It is a vector space of the same

dimension as the group, which is 10. He then organizes its components according to:

� A scalar, energy

� A 3-vector momentum

� A 3-vector spin

� A 3-vector to which he gives the name ”passage”

These components of momentum then define motions in Minkowski space, where the

Poincaré group is the isometry group. These motions are divided into classes, and Souriau

establishes a connection between particles and classes of motions. He shows that the com-

ponents of the 3-vector passage can be canceled by choosing a coordinate system that ac-

companies the particle in its motion. The remaining physical quantities are the first three.

Their emergence can also be interpreted as an application of Noether’s theorem:

� The scalar energy is then associated with the subgroup of temporal translations.

� The 3-vector momentum with the subgroup of spatial translations.

� The 3-vector spin (unquantized) with the Lorentz subgroup, around which the Poincaré

group is constructed.

But at the end of this approach, a surprise awaited the physicist. The Lorentz group is

defined by:

Lor := {L ∈ GL(4,R), τ(L)L = I4} .

with:

τ(L) := I1,3L
T I1,3 , I1,k :=

(
−1 0

0 Ik

)
(k ∈ N).

We extend the map τ to vectors of R4, by setting for all X ∈ R4:

τ(X) := XT I1,3

The Lorentz group has four connected components (see [7], [27] and [33]):

� Lorn is the neutral component (its restricted subgroup), does not invert either space

or time i.e. defined by:

Lorn := {L ∈ Lor, det(L) = 1 ∧ [L]00 ≥ 1}
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� Lors inverts space i.e. defined by:

Lors := {L ∈ Lor, det(L) = −1 ∧ [L]00 ≥ 1}

� Lort inverts time but not space i.e. defined by:

Lort := {L ∈ Lor, det(L) = 1 ∧ [L]00 ≤ −1}

� Lorst inverts both space and time i.e. defined by:

Lorst := {L ∈ Lor, det(L) = −1 ∧ [L]00 ≤ −1}

We have:

Lor = Lorn ⊔ Lors ⊔ Lort ⊔ Lorst. (1)

The first two components are grouped together to form the subgroup called ”orthochronous”:

Loro = Lorn ⊔ Lors (2)

It includes P-symmetry, which poses no problem for physicists who know that there are

photons of ”right” and ”left” helicity whose motions are derived from this symmetry. This

corresponds to the phenomenon of the polarization of light.

The last two components form the subset ”retrochronous” or ”antichronous”, whose

components invert time:

Lora = Lort ⊔ Lorst (3)

We have:

Lor = Loro ⊔ Lora (4)

The Poincaré group is defined by:

Poin :=

{(
L D

0 1

)
, L ∈ Lor ∧ D ∈ R4

}
, (5)

it inherits the properties of the Lorentz group and thus has four connected components.

We then distinguish the subgroup of the complete Poincaré group, constructed from the

orthochronous components of the Lorentz group. And we define all components (like Lorentz

group):

∀α ∈ {n, s, t, st, o, a}, Poinα :=

{(
Lα D

0 1

)
, Lα ∈ Lorα ∧ D ∈ R4

}
. (6)

We have the same decomposition like (1), (2), (3) and (4).

The classification of motions yields two classes corresponding to the movements of pho-

tons and particles with a positive mass m. Souriau summarizes his study by providing a
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summary of the group’s action on its momentum (see [35] chapter 13).

We can define the moment matrix M and the stress–energy vector P as follows:

M :=

(
0 gT

g j(ℓ)

)
, P :=

(
E

p

)

with ℓ the angular momentum of M , g the relativist barycenter of M , p the linear momen-

tum of P , and E the energy of P .

The action is written (see [35] equation 13.107) for all L ∈ Lor :

M ′ = LMτ(L) + Cτ(P )τ(L)− CLPτ(C) (7)

P ′ = LP (8)

We have:

Lort = −Lors Lorst = −Lorn (9)

Then, it is possible to write the complete Poincaré group as:

Poin :=

{(
λLo D

0 1

)
, Lo ∈ Loro ∧ D ∈ R4 ∧ λ ∈ {±1}

}
. (10)

The action of the complete group is then written as follows for all L := λLo ∈ Lor:

M ′ = LoMτ(Lo) + λCτ(P )τ(Lo)− CLPτ(C)

P ′ = λLoP

It’s then observed that the retrochronous components reverse the energy and, conse-

quently, the mass, as noted by J.M. Souriau ((14.67) of page 198 [35]).

In the past, we have seen an example where P. Dirac suggested the use of an electric

charge symmetry. The existence of particles with opposite electric charges was thus directly

implied by an extension of the theory. This involved postulating the existence of positrons.

Fortunately, the existence of such particles was quickly confirmed by C.A. Anderson’s ob-

servations1, which earned him the Nobel Prize in 1936.

We are in 1970. J.M. Souriau’s theoretical framework raised the possibility of particles

with negative energy, which were categorized into two classes:

� Particles endowed with a negative mass m

� Photons endowed with negative energy.

In conclusion, the author indicated potential measures to circumvent the emergence

of particles with negative mass, one of which was to decide that only the orthochronous

components of the Poincaré group should pertain to the realm of physics.

1To be precise, this observation did not follow P. Dirac’s deduction in the sense that, in 1923, the Russian
D. Skobeltzyn was the first to make this observation.
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2 When observations suggest the introduction of nega-

tive masses

Major Implications in Cosmology

When observations suggest the introduction of negative masses in cosmology, the introduc-

tion of particles with negative mass and energy posed a serious problem in physics. It is

noteworthy that they also appear in quantum mechanics if, in the field theory of quantum

mechanics, we choose to make the T-operator, which inverts time, linear and unitary, in-

stead of antiunitary and antilinear as had been chosen until then, precisely to oppose the

emergence of states with negative energy [41]. This perspective opens up a new field of

theoretical research where N. Debergh has published some articles [18], [17]. However, it

required an observation to reveal a phenomenon that demonstrates the action of unknown

particles. The discovery of the acceleration of cosmic expansion, due to negative contents,

can be considered an answer to this question.

In general relativity, the cosmological dynamics are determined by two possible causes:

the value of the cosmological constant present in Einstein’s equation, and a field source

represented by the contents of the tensor on the right-hand side of the equation. In mixed

notation:

Rν
µ − 1

2
Rδνµ = χT ν

µ − χΛδνµ (11)

In this equation, Rν
µ represents the Ricci curvature tensor, R is the Ricci scalar, and

δνµ is the Kronecker symbol, which is used to write the equations in a compact form. The

term χT ν
µ corresponds to the energy-momentum tensor that describes the distribution and

flow of energy and momentum in spacetime, which acts as the source of the gravitational

field. The term −χΛδνµ introduces the cosmological constant Λ, which can be interpreted as

the energy density of the vacuum of space contributing to the overall dynamics of the cosmos.

Taking Λ = 0, assuming positive masses, and by considering the cosmic fluid as a perfect

gas, the source tensor, or the energy-momentum tensor, is given by:

T ν
µ =


ρc2 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p

 (12)

where c represents the speed of light, ρ is the energy density and p is the pressure, as the

volumetric kinetic energy density associated with thermal agitation at the mean quadratic

velocity ⟨v⟩, following the relationship:

p =
ρ⟨v2⟩
3

(13)

If it involves positive mass, then ρ and p are positive. However, the evolution then indi-

cates deceleration. The currently adopted solution attributes this expansion’s acceleration

to the constant Λ, likened to the action of dark energy, of unknown nature, with constant
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volumetric density. The evolution of the cosmic space scale factor then becomes exponential.

Deceleration could occur if the source of the field could be attributed to a negative mass

and energy content, while simultaneously taking a zero cosmological constant. This results

in an evolution with a negative curvature index that tends, at infinity, towards asymptotic

expansion at constant speed. However, a significant and insurmountable difficulty arises.

With a single field equation, test particles, especially test masses, follow the same geodesics.

This can be summarized in the laws of interaction:

� Positive masses (source ρ and p > 0) attract both positive and negative masses.

� Negative masses (source ρ and p < 0) repel both positive and negative masses.

Such a set of forces violates both the action-reaction principle and the equivalence princi-

ple, giving rise to the uncontrollable runaway phenomenon. When this aspect was discovered

in 1957 [5], scientists concluded that negative masses could never be a part of physics.

J.P. Petit and G. D’Agostini ([30], [29]) consider a bimetric configuration, where positive

masses and positive-energy photons would follow geodesics arising from a metric g
(+)
µν , while

negative masses and negative-energy photons would follow geodesics arising from a metric

g
(−)
µν . This led to the project of conceiving a system of two coupled field equations derived

from an action. However, the first attempt at a bimetric modeling was by T. Damour and

I. Kogan in 2004 ([12], [13]). Starting from these two metrics, two Ricci tensors R
(+)
µν and

R
(−)
µν , and two Ricci scalars R(+) and R(−) are constructed. The proposed system, with the

pair of metrics g
(L)
µν and g

(R)
µν , is then:

RL
µν − 1

2
gLµνR

L =
(
TL
µν + tLµν

)
(14)

RR
µν − 1

2
gRµνR

R =
(
TR
µν + tRµν

)
(15)

Such an approach implies introducing a different geometric context. It does not involve

introducing negative masses at all. The authors consider an interaction between two branes,

using gravitons with a mass spectrum. The tensors TL and TR represent the content of each

brane. The tensors tL and tR can be described as interaction tensors. Tensor tL reflects the

source of the action of particles from the “Right” brane structured by equation 15 on those

from the “Left” brane structured by the first field equation 14, while tensor tR represents the

source of the action of particles from the “Left” brane structured by the first field equation

14 on those from the “Right” brane structured by equation 15.

Starting from the metrics g
(L)
µν and g

(R)
µν , we construct covariant derivative operators ∇ν

L

and ∇ν
R. The covariant derivatives of the first two terms are zero by construction. There-

fore, the covariant derivatives of the second terms must also be zero. This represents the

translation of the Bianchi conditions.
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It is easy to envision, with mixed notation:

TLν

µ =


ρLc

2 0 0 0

0 −pL 0 0

0 0 −pL 0

0 0 0 −pL

 , TRν

µ =


ρRc

2 0 0 0

0 −pR 0 0

0 0 −pR 0

0 0 0 −pR

 (16)

And to have:

∇ν
LT

Lν

µ = ∇ν
RT

Rν

µ = 0 (17)

which are then conservation equations. The problem then is to produce the forms of the

interaction tensors such as:

∇ν
Lt

Lν

µ = ∇ν
Rt

Rν

µ = 0 (18)

Here ends the attempt of these two authors.

A more intriguing approach in 2008 is that of S. Hossenfelder [21], also based on an

action, which leads to the system of equations:

(g)Rvk − 1

2
gvk

(g)R = Tkv − V

√
h

g
avva

k
k (19)

(h)Rvk − 1

2
hvk

(h)R = T vk −W

√
g

h
akka

v
vTkv (20)

The same divergence-free first terms are found, whose form results from the introduc-

tion of the Ricci scalars (h)R and (g)R into the action that was used to construct this system

of equations. The second terms of both right-hand sides also reveal interaction tensors,

weighted by the square root of the ratio of the determinants of the two metrics, whose

presence stems from the form of the considered action. The author indicates his intention

to manage masses of both signs. However, his system of equations generates interaction

laws, similar to what was obtained with Einstein’s equation, which are also physically un-

acceptable. Believing that this aspect is automatically linked to any bimetric description,

the author then abandons this project.

It is useful, in presenting a new model, to follow the progression adopted by the authors

of what would become the Janus cosmological model. While the first two attempts were

immediately based on an action, their approach can be described as heuristic.

In 1995 [28], J.P. Petit created numerical simulations by making positive and negative

masses interact. Starting from complete symmetry, where only the sign of the mass changes,

he observed a percolation phenomenon that hardly seems comparable to observational data

as on figure 1.
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Figure 1: Percolation phenomenon with separation of masses of opposite signs

He then had the idea to endow the negative species with a higher volumetric mass value.

A lacunar structure then appears, where the positive mass is caught between conglomerates

of adjacent negative mass as on figure 2.

Figure 2: Formation of a Lacunar Structure

Today, it is known that ordinary, visible matter has such a lacunar structure. In 1995,

the author concluded that this structure results from a profound asymmetry between pos-

itive and negative masses. Since the accretion time, or the time it takes for structures to

form through gravitational instability, varies as the inverse of the square root of the absolute

value of the volumetric mass, it is deduced that conglomerates of negative mass are the first

to form, in a regular distribution, confining positive mass within the interstitial space.

The existence of these conglomerates of negative mass was confirmed with the discovery

in 2017 of the first among them, the dipole repeller 3 [20].
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Figure 3: Dipole Repeller

The second point in favor of such a model is its prediction of an early formation of

stars and galaxies, within the first hundred million years, based on the following idea:

when positive mass adopts its lacunar structure, it is violently compressed by the repulsion

exerted by the two adjacent negative mass conglomerates. It then heats up, but its flat

plate structure leads to equally abrupt cooling by radiative dissipation, which destabilizes

it and results in the birth of stars and galaxies (figure 4).

Figure 4: Scheme for the rapid formation of galaxies

Observational confirmation has recently been provided in 2022 [19] and 2023 [1], with

the James Webb Space Telescope revealing the existence of fully formed spiral galaxies,

hosting stars that are already old, only 500 million years post Big Bang, a scenario that the

prevailing model, even with the best parameters for dark matter, cannot account for.

Over the years, observational confirmations have become increasingly numerous, prompt-

ing the development of a mathematically coherent relativistic model. The first success was

achieved in 2014 [31], by constructing a coupled field equation system that accounts for the

acceleration of cosmic expansion, under the assumption that both the positive and nega-
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tive sectors satisfy the conditions of homogeneity and isotropy. Under these conditions, the

corresponding hyperbolic Riemannian metrics are FLRW-type metrics:

g(+)
µν = dx02 − a(+)2

1− k(+)

(
du2 + u2dθ2 + u2 sin2 θdϕ2

)
(21)

g(−)
µν = dx02 − a(−)2

1− k(−)

(
du2 + u2dθ2 + u2 sin2 θdϕ2

)
(22)

The set {u, θ, ϕ} represents the radial coordinates. x0 is a chronological variable. a(+)

and a(−) are the scale factors for the two populations. A system of equations of the form:

R(+)ν
µ − 1

2
R(+)δνµ = χ

[
T (+)ν

µ + T (−)ν
µ

]
(23)

R(−)ν
µ − 1

2
R(−)δνµ = −χ

[
T (−)ν

µ + T (+)ν
µ

]
(24)

Applied specifically to this symmetry, this system generates a solution such that a(+) =

a(−) with equal and opposite specific masses, which cannot account for the results of the

simulations. The authors then attempt to enrich their model by writing:

R(+)ν
µ − 1

2
R(+)δνµ = χ

[
T (+)ν

µ +Φ(x0)T (−)ν
µ

]
(25)

R(−)ν
µ − 1

2
R(−)δνµ = −χ

[
T (−)ν

µ + ϕ(x0)T (+)ν
µ

]
(26)

In these equations, all terms depend only on the chronological variable x0. With this

approach, where only solutions a(+) and a(−) are sought as functions of the chronological

variable x0, the covariant derivatives refer only to this single variable. The consistency of

the equations leads to the result:

Φ =

[
a(−)

a(+)

]3
= ϕ−1 (27)

As the determinants of the metrics are:

g(+) = −a(+)6 sin2 θ (28)

g(−) = −a(−)6 sin2 θ (29)

It is then noticed that the coefficients ϕ and Φ are respectively identified with the factor√
g(+)

g(−) and its inverse, which draws attention to the essay by D. Hossenfelder [12]. In 2014,

an exact solution is presented [31], and in 2018, G. D’Agostini [11] shows that it indeed

accounts for the available observational data (5).
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Figure 5: Acceleration of the expansion in agreement with observational data

Thus, the system of coupled field equations for the Janus model becomes:

R(+)
µν − 1

2
R(+)g(+)

µν = χ

T (+)
µν +

√
g(−)

g(+)
T̂ (−)
µν

 (30)

R(−)
µν − 1

2
R(−)g(−)

µν = κχ

√g(+)

g(−)
T̂ (+)
µν + T (−)

µν

 (31)

Major Implications of Quantum Field Theory

In Quantum Mechanics, quantum physicists traditionally adopt an anti-linear and anti-

unitary perspective for the T-operator. A P-operator is chosen to be unitary and linear for

analogous reasons as quoted on pages 75 and 76 of [41]:

If P were antiunitary then it would anticommute with i, so PHP−1 = −H.

But then for any state Ψ of energy E ≥ 0, there would have to be another

state P−1Ψ of energy −E < 0. There are no states of negative energy

(energy less than that of the vacuum), so we are forced to choose the

other alternative: P is linear and unitary, and commutes rather than

anticommutes with H. On the other hand, setting ρ = 0 in Eq. (2.6.6) yields

TiHT−1 = −iH.

If we supposed that T is linear and unitary then we could simply cancel the is,

and find THT−1 = −H, with the again disastrous conclusion that for

any state Ψ of energy E there is another state T−1Ψ of energy −E. To

avoid this, we are forced here to conclude that T is antiunitary and

antilinear.
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Now that we have decided that P is linear and T is antilinear, we can conve-

niently rewrite Eqs. (2.6.3)-(2.6.6) in terms of the generators (2.4.15)-(2.4.17)

in a three-dimensional notation.

And to conclude by adding on page 104 that: ”No examples are known of particles

that furnish unconventional representations of inversions, so these possibilities

will not be pursued further here. From now on, the inversions will be assumed

to have the conventional action assumed in Section 2.6”. So, at the time this theory

was conceived, no phenomena had yet been observed that would allow us to address the

question of negative energy states. However, the observation that the universe’s expansion

is accelerating compels us to consider these states, as pointed out on the previous section

and in the study [31]. This idea was subsequently taken up and developped by N. Debergh

([18], [17]).

In summary, everything mentioned above is intended to recall the approach used to create

this model, which presents itself as an extension of general relativity, exploring its physical

foundations, implications, and outcomes. It is now appropriate to attempt to specify the

contents of this model. A presentation of this symplectic group, which was associated with

it, has already been published ([31]), showing that matter-antimatter symmetry could be

included. The second paper, which will follow the publication of this present article revised

in accordance with your feedback, is currently being drafted in a more structured manner. It

will include the Lagrangian derivation from an action, as illustrated in the diagram proposed

in reference [32].

3 When the theory of dynamic groups illuminates the

traveled path

The application of the coadjoint action of a symplectic group on the dual of its Lie algebra,

initiated by the mathematician Jean-Marie Souriau, has shed light on specific aspects of the

approach followed by physics. The orbit method is due to Kirillov ([6], [10], [8], [9], [23],

[24], [26], [36], [39] and [40]).

Thus, the restricted Lorentz symplectic group, limited to its two orthochrone compo-

nents, translates, through the invariance properties that result from it, the aspects of special

relativity. In 1970, J-M Souriau established that the analysis of the components of its mo-

ment makes it possible to shed light on the geometric nature of a spin (not quantized): see

[35] and [34]. He uses for this purpose symplectic methods ([16], [14], [37] and [38]). In

the theory of symplectic groups, we show a classification in terms of movements. At this

stage, the action of these elements reversing space finds its illustration in the phenomenon

of polarization of light, where any ”right” photon can be converted into a ”left” photon.

By operating the product of this group by that of the spatio-temporal translations,

we obtain the restricted Poincaré symplectic group, always limited to its two orthochrone

components. In its moment, we first find the energy related to the subgroup of temporal

translations. Then the momentum, linked to the spatial translations, the two being linked

by the invariance of the modulus of the energy-momentum four-vector under the action of

the Lorentz group.
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By adding a translation along a fifth dimension to the restricted Poincaré group, we

form a Lie group to which we will give the name Restricted Kaluza Group ([2], [3], [4], [22],

[25]). This group is not the 15-dimensional Kaluza group associated with a 5-dimensional

Lorentzian manifold but a new 11-dimensional group, including 5-dimensional space-time

translation. This new dimension endows the momentum with an additional scalar that can

be identified with the electric charge q, which may be positive, negative, or zero, and is

still not quantized. We then bring out the geometric translation according to a scalar ϕ

due to endowing the masses with an invariant electric charge. Then, by bringing in a new

symmetry reflecting the inversion of the fifth dimension, synonymous with an inversion of

the scalar from q to −q, we double the number of its connected components from 2 to 4.

The action on the moment then links this new symmetry to the inversion of the electric

charge q. We thus deduce the geometric modeling of charge conjugation or C-Symmetry,

which translates the matter-antimatter symmetry introduced by Dirac. It’s then logical to

name this new extension, the Restricted Janus Group.

By introducing a new symmetry to the previous group, which we describe asT-Symmetry

and which converts matter into antimatter with negative mass – a concept we could name

antimatter in the Feynman sense – we build the Janus Symplectic Group. Thus, we double

the number of connected components from four to eight, grouped into two subsets: ”Or-

thochronous”, conserving time and energy properties, and ”Antichronous”, reversing time

and energy. Therefore, we bring forth the geometric translation of endowing masses with

an invariant electric charge. As the Jean-Marie Souriau demonstrated as early as 1970, a

pioneer in the theory of symplectic groups ([35], [15], [34]), this approach has allowed key

elements, which have marked the progress of relativistic physics, to be given a purely geo-

metric nature.

In relation to the world of physics, wouldn’t the role of mathematics be to illuminate

the path traveled? Conversely, could it be possible that the exploration of new symmetries,

accompanying this decoding using symplectic groups, contains more than what we thought

we put into it? That it could designate new paths to follow?

This is what we will consider with the Janus Symplectic Group with charge symme-

try, by integrating the antichronous components of the Lorentz group, resulting from its

simple axiomatic definition, with the obvious repercussions on the Poincaré group and its

extensions.

4 Janus Symplectic Group

Let T̃ := I1,3, P̃ := −T̃ and:

∀λ, ν ∈ {0, 1}, Lor
(
P̃

ν
T̃

λ
)
:=
{
LnP̃

ν
T̃

λ
, Ln ∈ Lorn

}
.
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Then, there are 4 connected components of Lor, given by2

Lorn = Lor
(
P̃

0
T̃

0
)

Lors = Lor
(
P̃

1
T̃

0
)

Lort = Lor
(
P̃

0
T̃

1
)

Lorst = Lor
(
P̃

1
T̃

1
)

and we have the decomposition:

Lor =
⊔

ν,λ∈{0,1}

Lor
(
P̃

ν
T̃

λ
)

(32)

Then, we define the Janus symplectic group.

Definition 4.1. The Janus symplectic group is defined as the subgroup of GL(6,R):

J an :=


L 0 D

0 (−1)η ϕ

0 0 1

 , η ∈ {0, 1} ∧ ϕ ∈ R ∧ L ∈ Lor ∧ D ∈ R4


The Janus symplectic group is therefore a subgroup of the group of isometries in dimen-

sion 5 given by3:

Aff(O(1, 4)) :=

{(
L D′

0 1

)
, L ∈ O(1, 4) ∧ D′ ∈ R5

}

with τ1,4(L) := I1,4L
T I1,4 and O(1, 4) := {L ∈ GL(5,R), τ1,4(L)L = I5}. The elements of

Aff(O(1, 4)) are the elements which preserve the distance between two events (pentavectors)

X := (t, x, y, z, ξ) and X ′ := (t′, x′, y′, z′, ξ′) given by:

d(X,X ′) := c2(t− t′)2 − (x− x′)2 − (y − y′)2 − (z − z′)2 − (ξ − ξ′)2

This fifth dimension is of space type (we note the variable ξ). Each dimension is therefore

associated with a symmetry, there are three types of symetries:

• the T-symmetry ;

• the Px-symmetry, Py-symmetry, Pz-symmetry grouped together what we call the P-

symmetry ;

• the ξ-symmetry corresponding to the C-symmetry (the charge conjugation).

2Equalities are shown by double inclusion. For example, let’s demonstrate that Lors = Lor
(
P̃

1
T̃

0
)
.

Take L ∈ Lors (det(L) = −1 et [L]00 ≥ 1). Then we have det(LP̃) = −1 and [LP̃]00 ≥ 1 i.e., we have

Ln := LP̃ ∈ Lorn. Since P̃
−1

= P̃, we can conclude that L = LnP̃ ∈ Lor
(
P̃

1
T̃

0
)
. The inclusion in the

other direction is trivial.
3Aff(O(1, 4)) is the affine group associated with O(1, 4), it is also defined by the semi-direct product

Aff(O(1, 4)) := O(1, 4) ⋉ R5. We can also define the symplectic Janus group as being the affine group
associated with the subgroup of O(1, 4) given by:

Elec :=

{(
L 0
0 (−1)η

)
, η ∈ {0, 1} ∧ L ∈ Lor

}
called the symplectic electric group and we have J an := Aff(Elec).
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This space of dimension 5 is a Minkowski metric space to which we have added one dimen-

sion, it has the metric I1,4.

We also define the restricted Janus group is the subgroup of J an given by:

J ann :=


Ln 0 D

0 1 ϕ

0 0 1

 , ϕ ∈ R ∧ Ln ∈ Lorn ∧ D ∈ R4


Let:

C :=

I4 0 0

0 −1 0

0 0 1

 , P :=

(
P̃ 0

0 I2

)
, T :=

(
T̃ 0

0 I2

)
.

We have:

∀λ, η, ν ∈ {0, 1},

Ln 0 D

0 1 ϕ

0 0 1

CηPνTλ =

LnP̃
ν
T̃

λ
0 D

0 (−1)η ϕ

0 0 1


and therefore by equation (32):

J an =


LnP̃

ν
T̃

λ
0 D

0 (−1)η ϕ

0 0 1

 , λ, η, ν ∈ {0, 1} ∧ ϕ ∈ R ∧ Ln ∈ Lorn ∧ D ∈ R4

 .

Definition 4.2. (i) The CPT-group is the subgroup K of J an of order 8 generated by

C, P and T ie:

K :=
{
CηPνTλ, η, ν, λ ∈ {0, 1}

}
= {I6,T,P,PT,C,CT,CP,CPT} .

(ii) For all X ∈ K, the X-component of J an is:

J an (X) := {JX, J ∈ J ann} .

Thus, we have:

J an
(
CηPνTλ

)
=


LnP̃

ν
T̃

λ
0 D

0 (−1)η ϕ

0 0 1

 , ϕ ∈ R ∧ Ln ∈ Lorn ∧ D ∈ R4

 .

These 8 components are the 8 connected components of J an, we have the decomposition:

J an =
⊔

X∈K

J an (X) =
⊔

η,ν,λ∈{0,1}

J an
(
CηPνTλ

)
.

The group Lor is the Lie group of dimension 6 and its Lie algebra is:

lor :=A(1, 3) := {Λ ∈ M(4,R), τ1,3(Λ) = −Λ}

15



Then, the group J an is a Lie group of dimension 11 and its Lie algebra is:

jan =


Λ 0 Γ

0 0 ε

0 0 0

 , Λ ∈ A(1, 3) ∧ Γ ∈ R4 ∧ ε ∈ R

 .

We have two caracterisations4:

(
R5
)∗

=

{(
Γ

ε

)
7−→ −

(
PT q

)
I1,4

(
Γ

ε

)
= −τ(P )Γ− qε,

(
P

q

)
∈ R5

}

A(1, 3)∗ =

{
Λ 7−→ −1

2
Tr(MΛ), M ∈ A(1, 3)

}
Then, we have:

jan∗ =


{

M P q
}
:

Λ 0 Γ

0 0 ε

0 0 0

 7−→ −1

2
Tr(MΛ)− τ(P )Γ− qε, M ∈ A(1, 3) ∧ P ∈ R4 ∧ q ∈ R

 5.

The action of the group J an on jan∗ is defined by the coadjoint representation i.e., for

any a ∈ J an and any µ ∈ jan∗, we denote this action by:

a • µ := Ad∗a(µ).

with

Ad∗ : J an −→ Aut(jan∗)

a 7−→ Ad∗a : µ 7−→
(
Z 7−→ µ

(
a−1Za

))
Proposition 4.1. Let:

a :=

L 0 D

0 (−1)η ϕ

0 0 1

 ∈ J an ,
{

M P q
}
∈ jan∗.

We have:

a •
{

M P q
}

=
{

LMτ(L) +Dτ(P )τ(L)− LPτ(D) LP (−1)ηq
}
.

4For all β ∈ R∗, the application Φβ which to M ∈ A(1, 3) associates the linear form Λ 7−→ βTr(MΛ) is
an isomorphism of A(1, 3) to A(1, 3)∗. Taking {Akl := −Ekl + [I1,3]ll[I1,3]kkElk, k, l ∈ {1, . . . , 4}, k < l}
the canonical basis of A(1, 3), we have Φ−1/2(Akl)(Akl) = 1, hence the choice of β := −1/2.

5The elements of jan∗ are called torsors.

16



Proof. We have:

(
a •
{

M P q
})Λ 0 Γ

0 0 ε

0 0 0


=
{

M P q
}a−1

Λ 0 Γ

0 0 ε

0 0 0

 a


=
{

M P q
}

τ(L) 0 −τ(L)D

0 (−1)η (−1)η+1ϕ

0 0 1


Λ 0 Γ

0 0 ε

0 0 0


L 0 D

0 (−1)η ϕ

0 0 1




=
{

M P q
}τ(L)ΛL 0 τ(L)(ΛD + Γ)

0 0 (−1)ηε

0 0 0


=− 1

2
Tr (Mτ(L)ΛL)− τ(P )τ(L)(ΛD + Γ)− (−1)ηqε

=− 1

2
Tr [(LMτ(L) + 2Dτ(P )τ(L)) Λ]− τ(LP )Γ− (−1)ηqε

=− 1

2
Tr [(LMτ(L) +Dτ(P )τ(L)− LPτ(D)) Λ]− τ(LP )Γ− (−1)ηqε

=
{

LMτ(L) +Dτ(P )τ(L)− LPτ(D) LP (−1)ηq
}Λ 0 Γ

0 0 ε

0 0 0



To describe the Lie algebra of J an, we can also use the isomorphism of Lie algebras6:

j : (R3,∧) −→ (A(3), [ , ])x

y

z

 7−→

 0 −z y

z 0 −x

−y x 0


.

with ∧ the cross product on R3 and A(3) the vector space of antisymmetric matrices of size

3. Then, we have:

jan =


Λ 0 Γ

0 0 ε

0 0 0

 , Λ ∈ A(1, 3) ∧ Γ ∈ R4 ∧ ε ∈ R

 =



0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

 , β, w, γ ∈ R3 ∧ v, ε ∈ R

 .

6We have for all u, v ∈ R3: u ∧ v = j(u)(v) and j(u ∧ v) = [j(u), j(v)] = j(u)j(v)− j(v)j(u).
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Therefore, for all
{

M P q
}
∈ jan∗, there are unique ℓ, g, p ∈ R3 and E, q ∈ R such as:

{
M P q

}Λ 0 Γ

0 0 ε

0 0 0

 =

{ (
0 gT

g j(ℓ)

) (
E

p

)
q

}
0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0


= −1

2
Tr

((
0 gT

g j(ℓ)

)(
0 βT

β j(w)

))
−
(
E pT

)
I1,3

(
v

γ

)
− qε

= ℓTw − gTβ + pT γ − Ev − qε

We denote this last equality as:

{
ℓ g p E q

}
0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

 .

The dual jan∗ has the following descriptions:
{

ℓ g p E q
}
:


0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

 7−→ ℓTw − gTβ + pT γ − Ev − qε, ℓ, g, p ∈ R3 ∧ E, q ∈ R

 .

Definition 4.3. Let

µ :=
{

M P q
}
:=
{

l g p E q
}
∈ jan∗

with relations:

M =

(
0 gT

g j(ℓ)

)
, P =

(
E

p

)
.

(i) The matrix M := M(µ) ∈ A(1, 3) is called the moment matrix associated with µ.

The vector ℓ := ℓ(µ) ∈ R3 is called the angular momentum of M , and the vector

g := g(µ) ∈ R3 is the relativist barycenter of M .

(ii) (a) The vector P := P (µ) ∈ R4 is called the stress–energy vector associated with µ.

The vector p := p(µ) ∈ R3 is called the linear momentum of P , and the scalar

E := E(µ) ∈ R is called the energy of P .

(b) The first Casimir number associated with µ is defined by:

C1 := C1(µ) := PT I1,3P = E2 − p2.

(c) The mass associated to µ is defined by :

m := m(µ) := sign(E)
√
C1 = sign(E)

√
E2 − p2.

(iii) The scalar q := q(µ) ∈ R is called the electric charge associated with µ.
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We deduce a simple expression of the action of the CPT-group K on the torsors of jan∗.

Corollary 4.2. Let
{

l g p E q
}
∈ jan∗. For all λ, η, ν ∈ {0, 1}, we have:

(CηPνTλ) •
{

l g p E q
}
=
{

l (−1)λ+νg (−1)νp (−1)λE (−1)ηq
}
.

Proof. We apply the Proposition 4.1 with a := CηPνTλ:

(CηPνTλ) •
{

l g p E q
}
= (CηPνTλ) •

{ (
0 gT

g j(ℓ)

) (
E

p

)
q

}

=

{
P̃

ν
T̃

λ

(
0 gT

g j(ℓ)

)
T̃

λ
P̃

ν
I1,3T̃

λ
P̃

ν
I1,3

(
E

p

)
(−1)ηq

}

=

{ (
0 (−1)λ+νgT

(−1)λ+νg j(ℓ)

) (
(−1)λE

(−1)νp

)
(−1)ηq

}
=
{

l (−1)λ+νg (−1)νp (−1)λE (−1)ηq
}

So we have:

C •
{

l g p E q
}
=
{

l g p E −q
}

P •
{

l g p E q
}
=
{

l −g −p E q
}

T •
{

l g p E q
}
=
{

l −g p −E q
}

Corollary 4.3. Let µ ∈ jan∗. For all λ, η, ν ∈ {0, 1}, we have:

P
(
(CηPνTλ) • µ

)
= P̃

ν
T̃

λ
P (µ)

C1

(
(CηPνTλ) • µ

)
= C1(µ)

m
(
(CηPνTλ) • µ

)
= (−1)λm(µ)

Proof. Let µ :=
{

l g p E q
}
∈ jan∗. We have for the stress-energy tensor:

P (P • µ) = P
({

l −g −p E q
})

=

(
E

−p

)
= P̃P (µ)

P (T • µ) = P
({

l −g p −E q
})

=

(
−E

p

)
= T̃P (µ)

P (P • µ) = P
({

l g p E −q
})

=

(
E

p

)
= P (µ)

for the first Casimir number:

C1

(
(CηPνTλ) • µ

)
= P (µ)T T̃

λ
P̃

ν
I1,3P̃

ν
P̃

λ
P (µ) = P (µ)T I1,3P (µ) = C1(µ)
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for the mass:

m
(
(CηPνTλ) • µ

)
= sign

(
E
(
(CηPνTλ) • µ

))√
C1

(
(CηPνTλ) • µ

)
= sign((−1)λE)

√
C1(µ) = (−1)λm(µ)

Therefore the elements variable by these actions are:

P (P • µ) = P̃P (µ) P (T • µ) = T̃P (µ) m (T • µ) = −m(µ) (33)

and we have the following table:

Figure 6: This table lists the 8 values of µ′ := (CηPνTλ) •
{

l g p E q
}

for all

λ, η, ν ∈ {0, 1}.

5 Discussion & Conclusion

General relativity immediately and irrevocably rejects the introduction of negative masses

into the universe by invoking the resulting Runaway phenomenon, and violations of the

principles of action-reaction and equivalence ([5]). Therefore, the construction of a new

model introducing states of negative energy and mass could only be considered in relativity
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by extending its initial geometric context. The theory of symplectic groups, articulated

around the different Lorentz, Poincaré or Kaluza groups allows to describe a universe where

no force is exerted, a flat world without curvature and where particles follow geodesics of

the Minkowski space according to a Lorentzian metric or of a fibered space structured by

a fifth dimension (open or closed). This theory only suggests the existence of two kinds of

contents that thus live in isolation without interacting.

The transition from the Lorentzian metric to a Riemannian metric, a solution to a field

equation arising from an action, introduces these interactions between masses by giving them

the power to contribute to the gravitational field. All this translates into the construction of

a field equation, the Einstein equation, whose solutions, in the form of metrics, describe the

behavior of this universe, either globally, over time, or locally by introducing phenomena of

gravitational lenses and the advance of the perihelia of elliptical type trajectories. These

phenomena have been confirmed by observation. However, if we have to manage two types

of masses, they will have to travel according to their own networks of geodesics structured

by distinct metrics in an extended geometric context. This bimetric configuration will then

emerge from a couple of two linked field equations that will be presented and studied in a

second paper, as well as the related geometric aspects. The phenomena accounted for by

this new model will be listed, including in the forefront the acceleration of cosmic expansion.

A balance will be made of the agreements of this model with already observed phenomena,

as well as predicted phenomena, then observed, such as the early birth of galaxies recently

observed by the James Webb Space Telescope. Thus, mathematics would play the role of a

guide in relation to physics, illuminating the path to follow, rather than the path already

taken.
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[16] G. de Saxcé and C. Vallée. Construction of a central extension of a lie group from its

class of symplectic cohomology. Journal of Geometry and Physics, 60:165–174, 2010.

[17] N. Debergh and J. P. Petit. On some reasons why the the reversal operator could be

unitary. Phys. Lett A, 442, 2022.

[18] N. Debergh, J. P. Petit, and G. D’Agostini. Evidence of negative energies and masses in

the dirac equation through a unitary time-reversal operator. J. Phys. Comm., 2:115012,

2018.

[19] L. Ferreira, N. Adams, and G. J. Conselice. Panic at rhe discs: First rest-frame optical

observations of galaxy structure at z>3 with jwt in the smacs 0723 field. Astrophysical

Letters, 938(1), 2022.
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