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Abstract 
We extend the Poincaré group to the complex Minkowski space-time. Special 
attention is paid to the corresponding algebra that we achieve through ma-
trices as well as differential operators. We also point out the generalizations of 
the two Casimir operators. 
 

Keywords 
Complex Minkowski Manifold, Poincaré Group, Lie Algebraic Methods  
Applied to Physics 

 

1. Introduction 

Complex numbers are known to be powerful mathematical tools to describe 
physical phenomena. Usually, their role is limited to intermediate calculations 
and they are not welcome in final results. However, sometimes these results do 
depend on these numbers in the sense that they explicitly appear in the final eq-
uations. 

To our knowledge, complex energies first appeared as intrinsic components of 
the physical paradigm in the relativistic Kemmer-Duffin-Petiau equation [1], 
dealing with vector mesons. When they are subject to a sufficiently strong mag- 

netic field (
2mB

e
> ), their energies, whose squares are given by1 [2] 

2 2 12 ; 0,1,2, ; 0, 1
2

E m eB n s n s = + + + = = ± 
 

              (1) 

become purely imaginary ones. 
More recently, some cosmological models [3] used an imaginary time. They 

 

 

1Here and all along this paper, we take the velocity of light equal to 1. 
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all conjecture a join between areas of imaginary time and areas of real time. 
Somehow, real time emerges from imaginary time, the latest being helpful to 
remove gravitational singularities. 

This idea is clearly not unanimous because an imaginary time is most of the 
time seen as non-physical, even heretical. Also voices [4] rose to emphasize the 
inconsistency of such a transition between imaginary and real times which still 
remains vague. Some attempts have been performed to specify it. For instance, 
in [5], imaginary time stands before the Planck time and is related to imaginary 
energies seen as pure information. Thus, an imaginary time is compatible with 
the fact that time does not go by and the information, which in a sense, replaces 
matter, is retained until time rotates and becomes real. To cite the authors of [5], 
this imaginary time is analogous to the moment when the music is burned on a 
CD but not yet listened to. It can wait indefinitely until one decides to put the 
CD in a drive: time then becomes real and follows its arrow. 

We think that imaginary time and, by extension, complex space-time coordi-
nates, are one of the most promising tracks for generalizing relativistic quantum 
mechanics. 

One of the advances of complex numbers in this direction is the concept of 
Minkowski complex space-time. A first attempt with emphasis on specific as-
pects of twistors has been performed in [6]. In the present paper, we come back 
to this idea but with a different metric. In fact, the metric considered in [6] in-
volved a complex space-time interval while we want to limit ourselves to a real 
one. We could compare this to the wavefunction role in usual quantum me-
chanics. Indeed this function, although complex, appears on a real form, like the 
square of its modulus, when physics concepts must be discussed. 

More precisely, the key idea involved by our proposal of (3 + 1)-D complex 
Minkowski manifold is to extend spatial as well as time coordinates to complex 
numbers with a Hermitian metric given by 

2d d ds x xµ ν
µνη=                          (2) 

with 

( ) { }1, 1, 1, 1 ; , , , ; , 0,1, 2,3diag x t x y zµη µ ν= − − − = =           (3) 

Here the notation xµ  refers to the complex conjugate of xµ  while the diag 
notation means that we consider a diagonal matrix. 

The purpose of this paper is to investigate this (3 + 1)-D Minkowski manifold 
and, in particular, to see what would the Poincaré group/algebra become when 
coordinates are complex numbers. 

To do so, we first have to consider a (6 + 2)-D real manifold by considering 
real as well as imaginary parts of the involved complex numbers. This is the sub-
ject of the next Section. Then, we use the corresponding coadjoint action to put 
in evidence the transformation laws on momenta which are nothing else than 
basis operators for the algebra. Sections 4 and 5 are devoted to the differential 
realization of these momenta in the real as well as the complex cases. The trans-
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formations of the group are then available in Section 6. We point out the Casi-
mir operators in Section 7 and finally conclude in Section 8. 

2. The Extended Poincaré Group/Algebra 

As well known the Lorentz group ( )1,3O  preserves 
TX Xη                              (4) 

where η  has been defined in (3) while 

( ) { }T , , , , 0,1, 2,3X t x y z xµ µ= = =  

(XT refers here to the transposition of X). 
If we now consider complex coordinates xµ , Equation (4) is replaced by 

( ( )T†
C CX X≡ ) 

( ) { }† T; , , , , 0,1, 2,3C C CX X X t x y z xµη µ= = =              (5) 

The Lie group ( )1,3,U C  is, by definition, the one leaving the quadratic form 
(5) invariant. 

This quadratic form (5) is equivalent to the orthogonal one 
T
R RX GX                             (6) 

with 

{ } { }T , , 0,1, 2,3 , 0,1, 2, ,7A
R R IX x x x Aµ µ µ= = = =             (7) 

and 

( )1, 1, 1, 1,1, 1, 1, 1G diag= − − − − − −                  (8) 

We obviously have 

R Ix x ixµ µ µ= +                           (9) 

The Lie group preserving (6) is ( )2,6O . 
Even if the quadratic forms are formally equivalent, the two groups ( )1,3,U C  

and ( )2,6O  have a different number of parameters (16 for ( )1,3,U C  and 29 
for ( )2,6O ). This finding, that might be surprising at first sight, will be ex-
plained in a next Section. 

Due to the embedding of ( )1,3,U C  in ( )2,6O , we focus on the larger 
group. 

Consequently, we define the extended Poincaré group on the (6 + 2)-D real 
Minkowski space as the set of the following (9 by 9) matrices 

0 1
L

g
α 

=  
 

                         (10) 

where the 8-vector 

( )T , 0,1, 2, ,7A Aα α= =   

is associated with (real) translations in the (6 + 2)-D manifold and L is the (8 by 
8) matrix of the ( )2,6O  group i.e. 

https://doi.org/10.4236/jmp.2021.123017
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TGL GL I=                           (11) 

The Lie algebra corresponding to (10) is the vector space of the matrices given 
by 

( )T; , 0,1, 2, ,7
0 0

AZ A
ω γ

γ γ
 

= = = 
 

               (12) 

Here the coefficients Aγ  are real numbers and ω is the matrix of the ( )2,6so  
algebra defined by 

TG Gω ω= −                          (13) 

In details, we have 
7

, 0

AB
AB

A B
J jω

=

= ∑                        (14) 

where ABJ  are real numbers and ABj  are the (28) basis matrices of ( )2,6so  
namely 

( ) ( )AB AB BAj AB e BA eε ε= −                  (15) 

(no summation on repeated indices). In Equation (15), the numbers ( )( )1ABε = ±  
are constrained by 

( ) ( ) ( ) ( ) ( ) ( );BC BC AD ADAB CD G AD AB CD G CBε ε δ ε ε ε δ ε= =    (16) 

while the notation ABe  stands for a 8 by 8 matrix made of “0” everywhere ex-
cept a “1” at the intersection of the ( )1 thA+  line and the ( )1 thB +  column. 

Noticing that 
AB CD BC ADe e eδ=                        (17) 

we come easily to the ( )2,6so  commutation relations 

, ;AB CD BC AD BD CA AC DB AD BC AB BAj j G j G j G j G j j j  = + + + = −      (18) 

We will come back to this algebra in Section 4. Let us just conclude this one by 
mentioning that the adjoint representation of the extended Poincaré group is, by 
definition, given by 

1Z gZg −′ =                          (19) 

This leads to 
1L Lω ω −′ =                          (20) 

as well as to the following relation 
1L L Lγ ω α ω−′ = − +                      (21) 

3. The Coadjoint Representation: Transformation Laws of 
the Momenta 

Here we follow Souriau’s approach [7], one of us has already successfully applied 
it [8] to Kaluza 5-D space-time. By analogy with what has been done in the 

( )1,3so  case, we define a torsor µ  of the extended Poincaré group by the 

https://doi.org/10.4236/jmp.2021.123017


N. Debergh et al. 
 

 

DOI: 10.4236/jmp.2021.123017 222 Journal of Modern Physics 
 

identity 

( ) ( ) ( )T1
2

Z Tr M GPµ ω γ≡ +                  (22) 

where 

{ } 8 T, , ,P M P GM G Mµ ≡ ∈ = −R                (23) 

We require the invariance 

( ) ( )Z Zµ µ′ ′ =                        (24) 

or, in other words 

( ) ( ) ( ) ( )T 1 T 11 1
2 2

Tr M GP Tr M L L P G L L Lω γ ω ω α ω− −′ ′+ = + − +     (25) 

where we have used Equations (20)-(21) of the adjoint representation. 
The relation (25) implies the following transformation on the momenta P: 

P LP′ =                           (26) 

Thus, Equation (25) reduces to 

( ) ( )1 T 11 1
2 2

Tr M Tr M L L P G Lω ω ω α− −′= −  

Remembering that the last term is the product of a transposed 8-vector and an 
8-vector, we can rewrite this relation as 

( ) ( ) ( )1 1 T1 1
2 2

Tr M L L Tr M Tr G L Pω ω ω α− −′ = +  

which, after usual manipulations on the trace, leads to 

( ) ( ) ( )1 1 T1 1
2 2

Tr L M L Tr M Tr L P Gω ω α ω− −′ = +  

or, in an equivalent way 

( ) ( ) ( ) ( )1 1 T TTr L M L Tr M Tr L P G Tr P GLω ω α ω α ω− −′ = + −       (27) 

We thus come to the conclusion that 
T T T TM LMGL G P L G LP Gα α′ = + −                (28) 

Equations (26) and (28) provide the transformation laws of the momenta. 

4. Differential Realization of the Momenta: The (6 + 2)-D 
Real Poincaré Algebra 

Let us take a look at the result (26). If we write the transformations on the coor-
dinates through the group as (cf. Equation (10)) 

X LX α′ = +                         (29) 

they can be inversed following 
T TX GL GX GL Gα′= −                     (30) 

This implies that 

GLG′∇ = ∇                          (31) 

https://doi.org/10.4236/jmp.2021.123017
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where ∇  is the 8D-gradient 

T , 0,1, 2, ,7A A
x
∂ ∇ = = 
∂ 

                    (32) 

Comparing with (26), it is obvious to conclude that 

( )constantP CG C= ∇ =  

With the conventions (7) and 

A Ax
∂

∂ ≡
∂

 

the momenta P are thus 

; A A AB
A A BP C P C CG P= ∂ = ∂ =                  (33) 

We recover the momenta of usual Quantum Mechanics if the constant C is fixed 
as C ih=  and A limited to the first four values. However, for simplicity, we fix 
here 1C =  so that 

; A AB
A A BP P G P= ∂ =                      (34) 

In the same way, the momenta M satisfying (28) can be realized through a ma-
trix similar to ω  (see Equation (14)) 

7

, 0

AB
AB

A B
M J j

=

= ∑  

but with 

, , 0,1, 2, ,7AB A B B AJ x x A B= ∂ − ∂ =                (35) 

In other words, we have 
T TM XP G PX G= −  

And it is straightforward to convince ourselves of (28) to be satisfied by using 
(26) and (29). 

It is then easy to find out the commutation relations of the (6 + 2)-D Poincaré 
algebra by using 

,A B ABx G ∂ = −                         (36) 

They read 

,AB CD BC AD BD CA AC DB AD BCJ J G J G J G J G J  = + + +          (37) 

in agreement with Equation (18) and 

,AB C AC B BC AJ P G P G P  = − +                   (38) 

, 0A BP P  =                          (39) 

5. The (3 + 1)-D Complex Poincaré Algebra 

By making use of the change of variables (9), we can define linear combinations 
of the ABJ  as well as the AP  operators in order to restore the extended Poin-
caré algebra in a (3 + 1)-D complex manifold. These linear combinations write 

https://doi.org/10.4236/jmp.2021.123017
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( )( )4 4M J J µ νµν µν + += − −                      (40a) 
( )

( )
4

4IM J Jµ νµν
ν µ

+
+= − −                      (40b) 

( )( )4 4N J J µ νµν µν + += − +                      (40c) 
( )

( )
4

4IN J Jµ νµν
ν µ

+
+= − +                      (40d) 

( ) ( )4 41 1;
2 2C CP P iP P P iPµ µ µ µ µ µ+ += − = +               (40e) 

They lead to the following realizations in terms of complex coordinates xµ  and 
their derivatives 

, , , , , , ,
t x y z x t x y zx

µ
µ µ

µ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ = = ∂ = = − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂    

     (41) 

M x x x xµν µ ν ν µ µ ν ν µ= − ∂ + ∂ − ∂ + ∂                 (42a) 

IM ix ix ix ixµν µ ν ν µ µ ν ν µ= − ∂ − ∂ + ∂ + ∂               (42b) 

N x x x xµν µ ν ν µ µ ν ν µ= − ∂ + ∂ − ∂ + ∂                 (42c) 

IN ix ix ix ixµν µ ν ν µ µ ν ν µ= − ∂ + ∂ + ∂ − ∂               (42d) 

,C CP Pµ µ µ µ= ∂ = ∂                        (42e) 

It was already evident through Equations (40) but it is even more obvious here 
that M µν , N µν , IN µν  are antisymmetric on their indices and thus there are 
six of them for each category while IM µν  is symmetric leading to ten different 
operators. These 28 operators are real ones: only the four CPµ  are complex and 
have to be supplemented by their conjugates. 

The corresponding commutation relations are then 

,M M M M M Mµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = + + +           (43a) 

, I I I I IM M M M M Mµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = − − + +          (43b) 

,I IM M M M M Mµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = − + + −          (43c) 

,M N N N N Nµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = + + +             (43d) 

,I I I I IM N N N N Nµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = − − + +            (43e) 

,N N M M M Mµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = + + +            (43f) 

, I I I I IM N N N N Nµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = + + +             (43g) 

,I IM N N N N Nµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = + − −             (43h) 

, I I I I IN N M M M Mµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = − + + −           (43i) 

,I IN N M M M Mµν αβ αν βµ βν µα αµ νβ βµ ανη η η η  = + + +            (43j) 

, ; ,C C C C C CM P P P M P P Pµν α αµ ν αν µ µν α αµ ν αν µη η η η   = − = −   
     (43k) 
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, ; ,I C C C I C C CM P i P i P M P i P i Pµν α αµ ν αν µ µν α αµ ν αν µη η η η   = + = − −       (43l) 

, ; ,C C C C C CN P P P N P P Pµν α αµ ν αν µ µν α αµ ν αν µη η η η   = − = −   
      (43m) 

, ; ,I C C C I C C CN P i P i P N P i P i Pµν α αµ ν αν µ µν α αµ ν αν µη η η η   = − + = −       (43n) 

, , , 0C C C C C CP P P P P Pα β α β α β     = = =     
                       (43o) 

The usual Poincaré algebra is recovered through Equations (42a), (43k) and 
(43o). It is now realized through complex variables and corresponds to the pro-
posal made by one of us in [8]. We can also recognize the algebra ( )1,3,u C  
through the operators (42a)-(42b) and their commutation relations (43a)-(43c). 
The operators (42c)-(42d) are the complement of ( )1,3,u C  in ( )2,6so . 

6. Transformations of the Extended Poincaré Group 

Now that the algebraic content is clear, let us come to the group approach sub-
tended by the transformations (29). 

We recognize in (29) eight real translations associated with α , or, in an 
equivalent way, four complex ones. The contributions of the matrix L can be 
understood as follows: 

1) Twelve transformations of “boost” type i.e. “rotations” between a (real or 
imaginary) time component and three (real or imaginary) space components: 

( ) ( )
( ) ( )

0 0

0 0

cosh sinh

sinh cosh

j j j
a ab a ab b

j j j j
b ab a ab b

t t x

x t x

θ θ

θ θ

 ′ = −

′ = − +

                 (44) 

with 1, 2,3; , ; ,j a R I b R I= = = . 
2) Twelve rotations between (real or imaginary) space components: 

( ) ( )
( ) ( )

cos sin

sin cos

k jk k jk j
a ab a ab b

j jk k jk j
b ab a ab b

x x x

x x x

θ θ

θ θ

 ′ = +

′ = − +

                  (45) 

with 1,2,3, ; , ; ,j j k a R I b R I= ≠ = = . 
3) Four rotations between real and imaginary parts of one of the components: 

( ) ( )
( ) ( )

00 00

00 00

cos sin

sin cos

R R I

I R I

t t t

t t t

θ θ

θ θ

 ′ = −

′ = +

                  (46a) 

( ) ( )
( ) ( )

cos sin

sin cos

j jj j jj j
R R I

j jj j jj j
I R I

x x x

x x x

θ θ

θ θ

 ′ = +

′ = − +

                (46b) 

Let us rewrite these results within the complex coordinates: 
00

;
jji j i jt e t x e xθ θ−′ ′= =                      (47) 

These equations are remarkable in the sense that they show that the complexifi-
cation enables the connection between the Lorentz components. Indeed we 
know [9] that the Lorentz group has four components: , ,L L PL L PTL↑ ↑ ↑ ↓ ↑

+ − + + += =  

https://doi.org/10.4236/jmp.2021.123017
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and L TL↓ ↑
− += . Each of the three last ones is related to the first one by acting on 

it with a discrete symmetry, either the parity operator P or the time-reversal op-
erator T. Two objects in “mirror symmetry” are necessarily linked by a rotation 
in a higher dimensional space and that’s exactly what happens here: the com-
plexification allows these dimensions to exist in order to relate a coordinate and 
its opposite (which corresponds to µµθ = π ). 

Similar discussions can be made with the complex algebra. We will just men-
tion here that if the ( )1,3,U C  operators perform transformations such as 
boosts or rotations on the four complex coordinates xµ , the other 12 ones (cor-
responding to exponentiations of N µν  or IN µν ) realize, in addition, a complex 
conjugation. It is actually the reason why, despite of the fact that the quadratic 
forms (5) and (6) are equivalent, the Lie groups ( )1,3,U C  and ( )2,6O  are 
not isomorphic. 

7. The Casimir Operators 

The number of Casimir operators associated with the inhomogeneous group 
( )2,6ISO  (which is the one subtended by our approach in the real space) is 

equal to 4 [10]. 
We put here explicitely in evidence two of them i.e. the ones generalizing the 

two Casimirs of the Poincaré algebra. 
The first Casimir operator is 

T
1C P GP=                           (48) 

It is indeed invariant under the transformation (26). Another way to be con-
vinced of the form (48) is to rewrite it in details 

1 4A
A C CC P P P Pµ

µ= =                      (49) 

and verify that it commutes with each of the 36 operators of the extended Poin-
caré algebra by using Equations (38)-(39) or (43k)-(43o) depending on whether 
we choose to work with eight real coordinates or four complex ones. 

By analogy with the real case, we can thus define the mass of a particle living 
in the complex Minkowski space-time by 

2 2 2 0; , j j
C CE m E P p P− = = =p                 (50) 

a relation which simplifies when the system is at rest and gives 
iE me φ=                           (51) 

This is the complex version of the famous Einstein relation2 E m= . 
The second Casimir operator requests more calculations. We indeed need to 

introduce the following 3-rank tensor 
ABC AB C AC B BC AW J P J P J P= − +                 (52) 

It is antisymmetric on the two first indices as well as on the two last ones but is 
(evidently) symmetric on A and C. It thus gives rise to 56 operators. 

 

 

2Recall that c = 1. 
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Let us take a while to mention that, in the real case, these operators reduce to 
the four well known ones 

1
2

W J Pνλ α
µ µνλαε=                        (53) 

namely the four components of the Pauli-Lubanski pseudo-vector. No need to 
say that, here, there is no interest to go through the dual to obtain a similar 
writing, as this will lead to a pseudo-tensor of rank 5. 

So let us focus on the operators (52). It is easy (even if laborious) to convince 
ourselves that they are such that 

,ABC DE AD BCE AE BCD BD ACE

BE ACD CD ABE CE ABD

W J G W G W G W

G W G W G W

  = − − 
+ + −

         (54a) 

, 0ABC DW P  =                         (54b) 

and 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )

,ABC DEF

AD BCE F BCF E AE BCF D BCD F

AF BCD E BCE D BD AEF C CEF A

BE ADF C CDF A BF ACE D ACD E

CD ABF E ABE F CE ABD F ABF D

CF DAB E EAB D

W W

G W P W P G W P W P

G W P W P G W P W P

G W P W P G W P W P

G W P W P G W P W P

G W P W P

  

= − + −

+ − + −

+ − + + −

+ − + + − +

+ −

    (54c) 

The two first relations show that 

2
ABC

ABCC W W=                        (55) 

does commute with each of the 36 generators of the extended Poincaré algebra 
and, consequently, is the second Casimir operator. 

Its interpretation goes through the so-called “little groups” technics i.e. re-
stricting ourselves to particular momenta P. If the rest is considered, only two P 
operators do not vanish: 

0 42 cos ; 2 sinP m P mφ φ= =                   (56) 

This implies the following form for 2C  

(
)

( ) ( )
( ) ( )

{ }( { } { }
{ }

2 2 2 2 2 2 2 2
2 12 31 23 15 16 17 25

2 2 2 2 2 2 2 2
26 27 35 36 37 56 57 67

22 2 2 2 2 2 2
14 24 34 45 46 47

22 2 2 2 2 2 2
01 02 03 05 06 07

2
01 14 02 24 03 34

05 45

4

4 cos

4 sin

4 sin cos , , ,

,

C m J J J J J J J

J J J J J J J J

m J J J J J J

m J J J J J J

m J J J J J J

J J

φ

φ

φ φ

= + + + + + +

+ + + + + + + +

− + + + + +

− + + + + +

− + +

+ +{ } { })06 46 07 47, ,J J J J+

       (57) 

We notice that the only JAB that does not appear in (57) is J04 namely the rotation 
on time. We also recover the spin interpretation of the real case except that we 
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have here 20 possibilities for one spin algebra ( ( )3so ) to be put in evidence. 
This is evidently due to the increasing of spatial dimensions which are now 6. 

8. Conclusions 

We have extended the Poincaré group as well as its algebra to a complex Min-
kowski space. Beyond the real operators corresponding to transformations of the 
real coordinates, our approach shows that supplementary imaginary as well as 
complex operators appear to form with the previous ones a 36-dimensional real 
or complex algebra according to choosing 8 real coordinates or 4 complex ones. 

What are the unirreps of the extended Poincaré algebra? What physical im-
plications could have this complex algebra? What would be a complex version of 
usual quantum mechanics? 

These questions remain open at this stage and will be the subject of further 
considerations. 
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